- furiore schose
L. Wíer ca 50240

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

```
            CONPUTER MODELING OF VOICE SIGNALS
                W!| TH
ADJUSTABLE PITCH AMD FORMANT FREOUENCIES
                            by
            Geoffrey T. Hall
                December 1978
Thesis Advisor:
\begin{tabular}{|c|c|}
\hline REPORT DOCUMENTATION PAGE & REPAD INSTRUCTITNS \\
\hline neport numet & 3. AECIPIENT'S CATALOG NUMEER \\
\hline Computer Modeling of Voice Signals with Adjustable Pitch and Formant Frequencies & \begin{tabular}{l}
3. TYPE OF REPORT A PERMOO COVERED Master's Thesis; \\
December 1978 \\
3. PERFOMMING ORG. REPOAT NUMDER
\end{tabular} \\
\hline \begin{tabular}{|c|}
\hline 7. Autmon(t) \\
Geoffrey Thomas Hall
\end{tabular} & 2. contract on grant mumberat \\
\hline 9. PERF ORMING ORGANIZATION MAME ANO ADOMESB Naval Postgraduate School Monterey, California 93940 &  \\
\hline Naval Postgraduate School Monterey, California 93940 & 12. REPORT OATE
Decermber 1378
13. NUMEEROEAGES \\
\hline \begin{tabular}{l}
Naval Postgraduate School \\
Monterey, California 93940
\end{tabular} &  \\
\hline
\end{tabular}
16. DISTAIBUTION STATEMENT (OI THI : REPORI)

Approved for public release; distribution unlimited.

18. SUPQLEMENTARY NOTES
19. KEY WChOS (Conitive on peverce ilde it neceesery and tdentlty by block number)

Linear Predictive Coding
Digital Speech Processing
Frequency Adjustment
20. ABSTMACT (Conifnue on reverce ide if neceecery and ldonify by bock mmoter)

> Digital encoding of speech to allow more efficient
transmission at low data rates involves the decomposition
of the speech waveform into various parameters which are related to the physical structure of the speech production process. In this thesis, linear predictive coding is used to produce a set of coefficients for the characteristic

polynomial of sucessive 25 msec . segments of the voice tract, in the z-domain. The location of the poles in the z-plane and the excitation pitch period are then shifted and the signal reformulated to cause changes of the overall frequency characteristics of the speech waveform, while maintaining the perceived sounds and information content. The resulting audio tapes confirm the theory and conjectures of the thesis.


Approved for public release; distribution unlimited.

Computer Modeling of Voice Signals with Adjustable Pitch and Formant Frequencies
by
Geoffrey T. Hall
Captain, United States" Marine Corps B.S., Purdue University, 1971

Submitted in partial fulfillment of the requirements for the degree of
master of science in electrical engineering
from the
NAVAL POSTGFADUATE SCHOOL
December 1978
\[
\begin{aligned}
& 14.478 \\
& 0.1
\end{aligned}
\]

\section*{ABSTRACT}

Digital encoding of speech to allow more efficient transmission at low data rates involves the decomposition of the speech waveform into various parameters which are related to the physical structure of the speech production process. In this thesis, linear predictive coding is used to produce a set of ccefficients for the characteristic polynomial of sucessive 25 msec . segments of the voice track, in the z-domain. The location of the poles in the \(z-p l a n e\) and the excitation pitch period are then shifted and the signal reformulated to cause changes of the overall frequency characteristics of the speech waveform, while maintaining the perceived sounds and information content. The resulting audio tapes confirm the theory and conjectures of the thesis.

\section*{IABLE OF CONTENTS}
1. ! NTRODUCTION ..... 8
II. SPEECH PRODUCTION AND CHARACTERISTICS ..... 10
A. SPEECH CHARACTEPISTICS ..... 10
B. PHYSICAL SPEECH PRODUCTION STRIJCTURE --- ..... 11
c. INFORMATION CONTENT ..... 13
11I. DIGITAL SPEECH PROCESSING TECHNICUES ..... 16
A. WAVEFORM METHODS ..... 16
B. SPECTRAL METHODS ..... 17
1. Short Term Frequency Analysis ..... 17
2. Homomorphic Processing ..... 18
C. YOICE TRACT PARAMETER TECHNIOL'ES IN THE TIME DOMAIN ..... 22
1. The Speech Model ..... 22
2. Linear Predictive Techniques ..... 25
IV. LINEAR PREDICTION THEOPY ..... 27
A. THEORY ..... 27
B. LINEAR PREDICTIVE CODING FOR VOICE ANALYSIS ..... 31
C. LPC COMMUNICATION SYSTEMS ..... 38
V. ADJUSTMENT OF VOCAL TRACT PARAMETERS USING LPC ..... 46
A. ADJUSTMEIT OF FDRMANT FREQUENCY AND BANDVIIDTH ..... 47
B. GAIN ADJUSTMENT ..... 50
C. PITCH PERIOD ADJUSTP.ENT ..... 52

VI. COMPUTER SIMULATION OF PITCH AND FORMANT MODIFICATION ..... 53
A. VOICE INPUT AND DIGITAL SAMPLING ..... 53
B. XDS 9300 OPERATION ..... 54
C. IBM 360 INPUT PREPARATION ..... 55
D. SCOPE OF SIMULATION PROGRAM ..... 56
E. LPC ENCODING ..... 57
1. LPC Coefficient Determination ..... 57
2. Error Signal Determination ..... 60
3. Voicing Decision ..... 60
4. Pitch Period Determination ..... 61
F. LPC PARAMETER MODIFICATION ..... 62
1. LPC Coefficient Modification ..... \(\varepsilon 3\)
2. Pitch Period Modification ..... 66
3. Gain Adjustment ..... F7
G. SPEECH PRECONSTRUCTION ..... 68
1. Unvoiced Speech ..... 68
2. Voiced Speech ..... 6 6
3. Transition Frames ..... 70
H. OUTPUT PROCESSING ..... 70
I. GRAPHICAL OUTPUT ..... 71
VII. RESULTS ..... 73
VIII. CONCLUSIONS ..... 75
APPENDIX A.I SEVEN TO NINE TRACK TAPF CONVEPSION PROGRAM ..... 76
APPENDIX A. 2 LINEAP. PREDICTIVE COOING AND VOICE MODIFICATION PPOGRAM ..... 77

APPENDIX A. 3 POWER SPECTRAL DENSITY ANALYSIS AND PLOTTING PPOGRAM ..... 94
APPENDIX A. 4 NINE TO SEVEN TRACK TAPE CONVERSION PROGRAM ----------------------------- ..... 99
APPENDIX B.I COMPUTER ANALYSIS AND MODIFICATION OF VOICED SPEEC ..... 100
APPENDIX B. 2 COMPUTER ANALYSIS AND MODIFICATION OF UNVOICED SPEECH ..... 113
APPENDIX C DESCRIPTION OF VOICE TAPE ..... 125
BIBLIOGRAPHY ..... 127
INITAIL OISTRIBUTION LIST ..... 128
(1)

\section*{1. INTRODUCTION}

Digital processing of speech signals has become important and .necessary with the introduction of high-speed digital devices into every phase of communication: place to place; man to machine; and machine to man.

Digital signals have a number of inherent advantages over analog signals. Digital signals may be coded for security or for noise immunity. A digital voice signal may be transmitted by the same equipment used for data and it may be multiplexed with that data. One of the primary disadvantages of the digital transmission of voice is the large bandwidth required with some digital techniques. When analog techniques, such as single side-band amplitude modulation, produce bandwidths of 5 KHz and the best digital system bandwidth was 64 khz , there was a very strong tendency to stay with the analog techniques.

However, recent advances in digital signal processing have made the digital transmission of voice highly efficient. Until recently digital transmission of speech was possible only by sampling the voice waveform at a sufficiently high rate and then performing an analog-to-digital conversion of each sample. A sufficient number of bits were transmitted for each sample which was sent to reconstruct the waveform at the reciever. The voice waveform must be sampled at aproximately 8,000
samples per second to avoid the loss of clarity. Each of the samples must then be converted to a \(6-10\) bit number for transmission. The overall data rate using these methods had a lower limit in the neighborhond of 48,000 bits per second.

Recent developments have allowed the voice pattern to be broken down into more basic parameters which are closely associated with the physical production of speech. These parameters vary rather slowly and can be transmitted at a lower rate. Data rates as low as 1200 bits per second have been achieved through the use of these techniques.

These methods are numerical representations of the physical production of speech, and therefore it is easier to alter the characteristics of speech by altering the associated parameters then by trying to alter the waveform directly.

This thesis reviews various digital speech processing techniques for use in a speech modification system. Linear predictive coding (LPC) was chosen for implementation and therefore the theory and practice of this techniaue are explained in detail. The desired modification of the speech waveform by shifting the poles of its characteristic polynomial, and the regeneration of the altered waveform are discussed and the implementation techniques explained. The \(18 M 360\) computer was used for simulating the techniaues developed. This simulation is covered in detail and the computer programs, with results, are provided.

\section*{11. SPEECH PPRODUCTION AND CHARACTEPISTICS}

Any digital system for altering speech characteristics must be based on knowledge of those characteristics and the physical structure which determines them.

\section*{A. SPEECH CHARACTERISTICS}

All speech can be broken down into a set of distinctive sounds called phonemes. In the case of American Englisin, there are generally considered to be 42 distinct phonemes which are classified into vowels, diphthongs, semivowels and consonants. Spoken communication is accomplished through various combinations of these sounds ard the accurate reproduction of each is a major criteria in judging voice processing systems. Phonemes are generated at a rate of about ten per second. Each phoneme is classified as voiced if vocal cord vibration is the source of the sound or unvoiced if the sound is produced by other means. If the characteristics of a phoneme change from the start to finish, the phoneme is called noncontinuart. Those phonemes which are statiunary are called continuant.

The lowest frequency present in a given voiced sound is called the pitch frequency. There are peaks in the spectral representation of a speech sound that are above the pitch frequency which are called formants and are numbered consecutively with increasing frequency. Although two

speakers may produce the same phoneme, the pitch and formant frequencies may be different. However, general relationships may be established between pitch and formant frequencies which are relatively constant from speaker to speaker, producing the same phoneme. If information is to be retained by a speech processing system, it must be able to reproduce at output, the pitch and formant frequency relationship which was present at the input.

\section*{B. PHYSICAL SPEECH PRODUCTION STPUCTIRE}

The vocal tract is a resonant tube with the vocal cords at one end and the lips at the other. The vocal tract acts as a frequency selective filter which has a transfer function that depends on how it is shaped at any given time.

(A) VOICED FIGURE 1. SOUND PRODUCTION

The input to the vocal tract is caused by either the vibration of the vocal cords at the lower end (figure l.a) or by the turbulence of air being forced through a
constriction at any of a number of locations along the vocal tract (figure lib). The vocal tract acts as a filter with a pulsed input from the vocal cords when producing voiced sounds such as 'a' or 'o'. During sounds caused by the forcing of air through a constriction, fricative sounds like 's' or 'f', the vocal tract acts as a resonant cavity which will have certain characteristic response frequencies. Typical waveforms for voiced and unvoiced sounds are shown in figure 2 .

\section*{ VOICED}

UNVOICED
FIGURE 2. TYPICAL WAVEFORMS

Certain characteristics of the vocal tract are changed several times per second to produce different sounds while others such as overall length and the diameter range limits are fixed for a given speaker. A detailed look at each of the types of sounds will insure that the digital processor used has the same flexibility as the actual speaker.

Vowels, voiced continuant sounds, are produced when the vocal cords vibrate causing pulses of air at the bottom
of the vocal tract. The shape of the vocal tract remains fixed during vowel production, acting as a stationary filter to respond to the forcing function.

The production of diphthongs and semivowels is similar to that of vowels except that the shape of the vocal tract is smoothly changed during voicing. Diphthongs and semivowels are noncontinuant, voiced sounds.

The phonemes classified as consonants may actually be further divided into subcatagories of voiced fricatives, unvoiced fricatives, stops and nasals. Fricatives are caused by the steady flow of air through a constriction in the vocal tract which causes turbulant air motion and a seemingly random air pressure pattern. Fricatives are voiced or unvoiced depending on whether the vocal cords are producing pressure pulses at the same time. Stops or plosives are caused by completely closing the vocal tract and then suddenly opening it to quickly start sound production. A stop is classified as voiced or unvoiced depending on the nature of the sound that follows the opening of the vocal tract. Nasals are voiced sounds which are formed when the vocal tract is closed and air is allowed to pass through the nasal cavity. This acts as a feed forward path for the sound and a corresponding change is caused in the total vocal tract response.

\section*{C. INFORMATION CONTENT}

One of the primary goals of speech processing is the
development of efficient codes for transmitting or storing speech and still allowing it to be reconstructed without excessive loss of information. The source coding theorem states that through the proper choice of coding we can code a source into a bit sequence arbitrarily close in length to the entropy of that source. However, efficient codes are difficult to find for even simple binary sources, let alone a continuous speech source. An estimation of the entropy of a typical speech source provides a useful guage for measuring the data rate performance of any system.

If 'excessive loss of information' occurs only when we don't receive the correct one of the 42 phonemes, the information content of one second of speech is approximately (assuming 10 phonemes are produced per second):
\[
H=10 \sum_{i=1}^{42} P\left(p_{i}\right)\left(-\log P\left(p_{i}\right)\right)
\]
where \(P\left(p_{i}\right)\) is the probability of the \(i\) th phoneme. Assuming further that each phoneme is equally likely,
\[
H=10 \times 42 \times 1 / 42 \times \log 42=54 \text { bits per second }
\]

If the actual probability of each phoneme was used, i.e. they are not equally likely, the value of entropy would be significantly lower.

If 'excessive loss of information' also includes
failure to identify the speaker and failure to indicate the speaker's emotional state the information content is higher. However if we assume that identification of the speaker (one of about two billion) is only reauired once per minute and that the speaker's emotional state (say one of ten) can only change once per second the entropy is still only 58 bits.
\[
\begin{gathered}
H(\text { speaker })=1 / 60 \times 10 \times 1 / 10 \times(-\log (1 / 10))=0.5 \\
H(\text { emotion })=10 \times 1 / 10 \times(-\log (1 / 10))=3.3
\end{gathered}
\]
\[
H(\text { phoneme })=54 \text { bits per second }
\]
\[
H(\text { total })=58 \text { bits per second }
\]

Clearly the theoretical limit is not being pushed by the current state of the art in speech coding.

Digital speech processing techniques may be placed into three general categories based on the assumptions used in their development. The first category is that of waveform techniques where the only primary assumption is that the signal which is being processed is frequency limited to no more than half of the sampling freauency. The second category of spectral methods adds the assumption that the frequency domain characteristics of the speech waveform vary siowly. Finally, the voice tract parameter techniaues assume that the physical voice production system can be modeled digitally.
A. WAVEFORM METHOES

Waveform techriques have the characteristic of operating equally well on any low-pass filtered waveform and all are generally based on the familar pulse code modulation. The basic requirements of a waveform quantization method is trat the waveform be sampled at greater than twice the highest frequency present and that the samples be quantized into a digital code for transmission. Although this technique is very straight forward, it also requires a high data rate. A waveform sampled 9500 times per second with each sample quantized to 256 levels would require 78,800 bits per second for
transmission. A number of variations (differential modulation and adaptive differential modulation) have been used to reduce the required data rate but have failed to cut the required data rate by more than about half.

\section*{B. SPECTRAL TECHNIQUES}

\section*{1. Short Term Frequency Analysis}

These methods deal with the short-term freauency properties of the speech signal. An early spectral method was the channel vocoder. The transmitting processor of the channel vocoder consists of a bank of narrow-band analcg filters. The energy passed by each filter is measured and transmitted to the receiver site. It is also determined whether the input speech was voiced or unvoiced and that determination is transmitted. In the receiver an excitation signal, determined by the voicing decision, was fed into a bank of narrow-band filters, each of which had an adjustable gain determined by the received energy measurements.

The same technique can be irplemented in an all digital method by replacing the bank of analog filters with digital filters or by performing a discrete Fourier transformation (DFT) on a frame of input samples. The use of the DFT is usually preferred because of computational efficiency and the availability of high-speed DFT array prosessors. Normally each input frame is windowed to reduce the noise which can be caused by a sharp cut of: at
the end of a frame. When this method is used to reduce the data rate required for digital transmission, the total DFT of each frame is not transmitted because the total DFT would require the same number of bits as the frame of samples (assuming both are quantizer to the same number of levels). Reduction in the data rate can be accomplished by skippirg frames and assuming trey are duplicates of the preceeding frame during reconstruction. The number of samples in the frame is also half the number of frequencies resolved by the DFT, therefore the frame length for analysis is choosen as a compromize between accuracy of voice reproduction and the desire for a low data rate.

This method of speech processing would lend itself well to altering the frequency characteristics of voice signals but it reauires a relatively high data transmission rate and therefore was not desirable for speech orocessing in conjunction with place to place communications or with digitally stored speech.

\section*{2. Homomorphic Processing}

Another method which involves freauency domain processing is homomorphic processing. It is based on the following three principles:
(1) Speech is the convolution of an excitation function and the transfer function of the vocal tract.
(2) Convolution in the time domain is equivalent to multiplication in the frequency domain.
(3) The Fourier transform is a linear transformation, i.e.
(a-r

C-
\(\qquad\)

再
\(\qquad\)
\[
F(x(t)+y(t))=F(x(t))+F(y(t))=X(w)+Y(w)
\]

A method of separating a speech waveform back into these components would help us analyze the speech. Homomorphic processing centers around the efficient deconvolution of these signals.

First the input signal is windowed and transformed via the DFT, to produce the frequency domain representation of the input speech. The time convoluticn of two signals is equivalent to multiplication in the frequency domain. However knowing the product of two waveforms does little toward gaining knowledge of the multiplicands unless further information is given. The multiplication of the two values at a given frequency is equivalent to adding the logarithms of each. The \(\log\) is taken of each of the values in the frequency domain representation of the signal which is then equal to the sum of the the \(\log\) of the frequency domain representation of the excitation function plus the the \(\log\) of the frequency domain representation of the vocal tract function. However, it is easier to tell the difference between the vocal tract excitation functions in the time domain, so the inverse DFT is taken of the \(\log\) of the frequency domain function. The function produced is called the cepstrum of the signal. Because taking the inverse \(D F T\) is a linear function, and the frequency domain function was the sum of two component functions, the time domain cepstrum must also be the sum of the cepstrum of the
CEPSTRUM
\(\square\)
\(+\)

\(\times \sqrt{2}\)

※隹
x 015




TIME FEN
EXCITATION
FUNCTION
*

DOMAIN TIME
excitation function and the cepstrum of the vocal tract function. Figure 3 illustrates the relationship between the steps of homomorphic deconvolution of signals.

Examination of the cepstrum between 2.5 and 20
msec. may reveal a peak that is considerably above the background noise level. If a peak is there, the segment is determined to be voiced with the peak occuring at the pitch period. The vocal tract is not long enough to sustain any vibrations for more than 20 msec . after a pulsed input. If there is no peak the segment is considered unvoiced. The cepstrum of the excitation function may be subtracted from the total cepstrum and the remainder considered an estimate of the cepstrum of the vocal tract transfer function. After working backwards to magnitude (vs. log of magnitude) in the frequency domain, the filter coefficients may be determined.

It would be relatively straight forward to alter both the excitation function and the vocal tract transfer function after the tctal sepstrum is broken into its additive components. However, homomorphic processing was not being widely used for voice communication and this technique was dropped in favor of a more widely used system. As array fast Fourier transform processors become faster and less expensive, homomorphic speech processing may become the dominant speech communication techniaue.
C. VOICE TRACT PARAMETER TECHNIQUES IN THE TIME DCMAIN The primary characteristic of this catagory is the close tie between the digital process and the physical structure being modeled. Although homomorphic processing uses the deconvolution of the vocal tract function and the excitation function as a primary tool, the homomorphic process does require transformations to and from the frequency domain and therefore is not included in this catagory. The primary member of this catagory is the linear prediction coding (LPC) process which has shown itself to be among the best and most versitile of the various speech processing techniques.

\section*{1. The Speech Model}

The speech model assumed and used for LPC is that of a time-varying digital filter which is excited by a wide-band functicn, either a pulsed input or random noise. This is illustrated in figure 4. The recursive filter used to model the vocal tract is all-pole and has slowly time varying (pseudo-stationary) coefficients. The filter's \(z\)-domain transfer function is
\[
\frac{Y(z)}{U(z)}=\frac{1}{1-\sum_{i=1}^{p} a_{i} z^{-i}}
\]
\[
Y(z)=U(z)+\left(\sum_{i=1}^{p} a_{i} z^{-i}\right) Y(z)
\]
or in the discrete time-domain
\[
Y(n T)=U(n T)+\sum_{i=1}^{p} a_{i} Y((n-i) T)
\]

From the time domain equation it is clear that the current output \(Y(n T)\) is uniauely specified in terms of the current input and the past p output values.


PHYSICAL


FIGURE 4. SPEECH MODEL

The vocal tract is not always best modeled by an all-pole filter, and particularly nasal sounds would probably be best modeled by a filter which also included zeros. However there is considerable difficulty in rapidly estimating both zoles and zeros of a transfer function when only a short segment of the output is available for analysis. However, experience has shown that high quality voice production is possible by using an all-pole filter of adequate order.

The order of the filter required is closely related to the length of the vocal tract. To adequately represent the lower frequency response of the vocal tract, the filter must include recursive delay equal to the delay encountered by sound waves traveling from the vocal cords to the lips and returning to the glottis.
\[
\begin{aligned}
& \text { velocity of sound }=344 \mathrm{~m} / \mathrm{sec} \\
& \text { length of vocal tract }=17 \mathrm{~cm} \\
& \frac{2 \times 0.17}{344}=0.988 \mathrm{msec}
\end{aligned}
\]

At a sampling rate of 10 kHz at least 10 past values would need to be included for an accurate model.

The excitation function for voiced sounds in modeled by a train of pulses at the glottis. Clearly these pulses can not be a perfect set of impulses, but rather must have a finite width and are likely to have a definite shape. Rather than construct a separate filter to change the impulses into the correct shape, additional poles are added to the model so that the combined transfer function
may be calculated at once. Normally two additions poles are adequate for the pulse shape model.
2. Linear Predictive Techniques

Linear predictive analysis is based on the division of speech modeling into modeling of the excitation function and modeling of the vocal tract transier function. The vocal tract is modeled by computing each sample as a weighted linear combination of previous samples. Linear predictive coding of speech is accomplished by filtering a sampled speech waveform through a filter which is the inverse of the filter which models the vocal tract. If the filter used is the inverse of a good mociel of the vocal tract, the output will be a good approximation of the excitation function. The various properties of the excitation function, along with the coefficients used in the vecal tract filter are measured and transmitted as shown in figure 5.


The received measurements are used in the decoding processor 50 reconstruct the excitation function and the filter. The process of reconstructing the speech waveform is shown in figure 6.


\section*{FIGURE 6. DECODING PROCESS}

The primary advantage in the use of linear predictive coding of speech is the reduction in the data rate required for transmission or storage. LPC systems have been developed which require data rates from 3000 to 4800 bits per second for high quality voice communication and rates as low as 1200 bits per second have been reported for lower quality but understandable speech production. Highly efficient algorithms have been developed for the encoding and decoding of speech using the LPC technique. When hardware implemented with special purpose, short word length microprocessors, the computations reauired for two-way communication have been done in \(65 \%\) of real time.

LPC was chosen as the method to be used for accomplishing the desired voice characteristic modifications. A detailed description of the theory and modeling assumptions follows.

\section*{IV. LINEAR PREDICTION THEORY}

Linear prediction is an extension of least squares estimation. In the case of one-dimensional linear prediction, it is more commonly labeled as time series analysis when used by statisticians for analysis of everything from population to the stock market.

\section*{A. THEORY}

It is assumed that each sample of the discrete time series, \(s(k T)\), as shown in figure 7 may be approximated by a linear combination of past samples of the time series.
\[
s(k T)=\sum_{i=1}^{m} a_{i} s((k-i) T)
\]
where \(s(k T)\) is the estimated sample value, \(a_{i}\) is the coefficient of the sample \(i\) steps past and \(m\) is the order of the approximation (and as we will see later the order of the \(z\)-domain filter of the model).


FIGURE 7. DISCRETE TIME SERIES


For a portion of the discrete time series ( \(N\) samples where \(N>m\) ), a least squares approximation of the weighting coefficients, \(a_{i}\), may be calculated. The estimate at each point
\[
\begin{aligned}
& \hat{s}(k T)=\sum_{i=1}^{m} a_{i} s((k-i) T) \\
& 1 \leq k \leq m
\end{aligned}
\]
is subtracted from the actual sample value and the error for each estimate, \(e(k T)\) is given.
\[
\begin{aligned}
& e(k T)=s(k T)-\hat{s}(k T) \\
& 1 \leq k \leq m \\
& e(k T)=s(k T)-\sum_{i=1}^{m} a_{i} s((k-i) T) \\
& 1 \leq k \leq m
\end{aligned}
\]

To minimize the error (in a least squares sense) the error is squared and summed over all points in the region of interest to obtain an overall error, E.
\[
E=\sum_{k=1}^{N} e^{2}(k T)=\sum_{k=1}^{N} s(k T)-\sum_{i=1}^{m}\left[a_{i} s((k-i) T)\right]^{2}
\]

The derivative of \(E\) with respect to each of the coefficients, \(a_{i}\), is taken and set equal to zero in order to locate the minimum of \(E\). This yields the following m equations.
\(\frac{\partial E}{\partial a_{j}}=0=\sum_{k=1}^{N}\left[2\left|s(k T)-\sum_{i=1}^{m} a_{i} s((k-i) T)\right| \frac{\partial}{\partial a_{j}}\left|s(k T)-\sum_{i=1}^{m} a_{i} s((k-i) T)\right|\right]\)
\[
1 \leq j \leq m
\]
however
\[
\frac{\partial}{\partial a_{j}}[s(k T)]=0
\]
and
\[
\begin{aligned}
\frac{\partial}{\partial a_{j}}\left[a_{i} s((k-i) T)\right] & =0, \quad i \neq j \\
& =s((k-j) T), i=j
\end{aligned}
\]
therefore
\[
\begin{gathered}
\frac{\partial E}{\partial a_{j}}=0=\sum_{k=1}^{N} 2\left[s(k T)-\sum_{i=1}^{m} a_{i} s((k-i) T)\right](-1) s((k-j) T) \\
1 \leq j \leq m
\end{gathered}
\]
removing the constant multiplier
\(0=\sum_{k=1}^{N} s(k T) s((k-j) T)-\sum_{k=1}^{N} \sum_{i=1}^{m} a_{i} s((k-i) T) s((k-j) T)\)
\[
1 \leq j \leq m
\]
changing the order of summation
\[
\sum_{k=1}^{N} s(k T) s((k-j) T)=\sum_{i=1}^{m} a_{i} \sum_{k=1}^{N} s((k-i) T) s((k-j) T)
\]

Given all of the samples within the summations over \(N\), the above set of \(m\) equations in the \(m\) unknowns, \(a_{i}\), can be solved. If only the samples
\[
s(k T) \quad 1 \leq k \leq N
\]
are given, the set of equations above can not be solved because of the requirement to know the samples
\[
s((1-j) T) \quad 1 \leq j \leq m
\]

However by windowing the samples so that all samples outside the region of interest are zero
\[
s(k T)=0 \quad k \leq 0 \text { and } k>N
\]
the summations over \(N\) in the set of equations above may be replaced by the autocorrelation of the windowed samples, \(s^{\prime}(k T)\).
\[
R(j)=\sum_{k=1}^{N-j} s^{\prime}(k T) s^{\prime}((k+j) T)
\]

This assumption may be made because the number of samples, \(N\), is normally much greater than the order, \(m\), of the set of equations. Therefore relatively few samples are lost. The window function used will not significantly alter the samples in the center of the frame, and therefore the resulting coefficients will be a correct approximation for that segment. The set of linear equations may now be written
\[
\begin{aligned}
& R(j)=\sum_{i=1}^{m} a_{i} R(i-j) \\
& 1 \leq j \leq m
\end{aligned}
\]

These equations may now be solved for the linear predictive
coefficients, \(a_{i}, 1 \leq i \leq m\).
If the system being studied is stationary or we are only considering a pseudo-stationary segment of the system output, and if the order of the model is sufficiently close to the order of the real system, future values of the variable may be calculated recursively from previous values. In the following section we will see how this theory is applied to speech modeling and reconstruction.
B. LINEAR PREDICTIVE CODING FOR VOICE ANALYSIS

The digital model used for speech synthesis is shown in figure 8. The discrete time excitation function is e( nT) and the synthesized speech output is \(s(n T)\).


FIGURE 8. SPEECH SYNTHESIS MODEL

The vocal tract filter is assumed to be all-pole and therefore can be represented by the \(z\)-domain equation
\[
H(z)=\frac{S(z)}{E(z)}=\frac{z^{m}}{\prod_{i=1}^{m}(z-p .)}
\]

Multiplying out the denominator and dividing both numerator and denominator by \(z^{m}\) yields.
\[
H(z)=\frac{S(z)}{E(z)}=\frac{1}{1-\sum_{i=1}^{m} a_{i} z^{-i}}
\]

This z-domain equation is converted to a discrete time domain equation as follows
\[
\begin{aligned}
& S(z)\left(1-\sum_{i=1}^{m} a_{i} z^{-i}\right)=E(z) \\
& S(z)=E(z)+\sum_{i=1}^{m} a_{i} z^{-i} S(z) \\
& S(n T)=e(n T)+\sum_{i=1}^{m} a_{i} s((n-i) T)
\end{aligned}
\]

If the excitation function \(e(n T)\) equals zero for a given sample, then this equation is similar to the first equation in the previous section on the theory of linear prediction. The coefficients of the z-domain filter transfer function are equivalent to the linear prediction wieghting coefficients.

Analysis of the sampled speech waveform is used to calculate the prediction coefficients which are then used in an inverse filter to determine the excitation function from the input speech. This inverse filter may be represented as
\[
\frac{E(z)}{S(z)}=1-\sum_{i=1}^{m} a_{i} z^{-i}
\]
or as
\[
E(n T)=s(n T)-\sum_{i=1}^{m} a_{i} s((n-i) T)
\]
and is construted as shown in figure 9.


\section*{FIGURE 9. INVERSE FILTER}

The input speech has been broken into vocal tract characteristics determined by the prediction coefficients and excitation signal characteristics which remain to be determined. During the encoding process the output of the inverse filter may also be considered an error signal because it is the difference between the actual speech sample and the predicted speech sample.

During voiced speech the vocal tract filter in figure 9 acts as a model for the total transfer function which is due to the glottal pulse shape, the actual vocal tract shape and the output reflection at the lips. Idealy during
voiced speech all of these effects are removed by the inverse filter and the error function is a train of impulses at the pitch frequency.

During unvoiced speech the physical excitation function is a pseudo-random air pressure variation caused by turbulence at a constriction somewhere along the vocal tract. This wide-band source is filtered by the portion of the vocal tract between the constriction and the lips. This portion of the vocal tract will resonate at certian characteristic frequencies but normally the number of peaks in the frequency domain response will be fewer than for voiced sounds because of the shorter segment of the vocal tract in use. During encoding of unvoiced speech the output of the inverse filter is pseudo-random because the inverse filter can't predict the output due to the random input.

The speech model is not complete with just the determination of the coefficients of the vocal tract filter. During speech reconstruction it is necessary to know:
(1) Which excitation signal, pulses or noise, to use.
(2) Excitation pulse period for voiced sounds.
(3) The gain multiplication factor.

Although these quantities are not necessarily determined using linear prediction theory, they are none the less required for a working speech encoding/decoding system.

During encoding, the marked difference in the error
signal for voiced and unvoiced speech can be used as the basis for the voiced/unvoiced decision. The energy of the error signal for voiced speech should be rather small in comparison to the energy of the input samples. On the other hand, during unvoiced speech the prediction is poor and most of the energy remains after filtering. The ratio of the average energy or root-mean-square value of the speech samples to the similar quantity of the error signal can be used to make the voiced/unvoiced decission. This ratio is compared to an empirically determined threshold and the segment is considered voiced whenever the ratio is greater than the threshold.

The gain used during reconstruction is the amplitude multiplier of the excitation signal at the input of the vocal tract filter. The gain used during unvoiced speech may be simply the root-mean-square of the error signal. This gain coefficient is multiplied by the output of a random number generator which produces normally distributed numbers with a root-mean-square value of unity.

The gain of voiced speech may also be determined from the root-mean-square value of the error signal. However during reconstruction of voiced speech the entire energy of the excitation signal is concentrated in a series of impulses which should have the same root-mean-square value. The root-mean-square value of a series of discrete-time impulses with amplitude, \(a\), and a period, \(p\), intervals is approximated by

\[
\begin{aligned}
& r m s=\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right]^{1 / 2} \\
& r m s \cong[\begin{array}{lll}
\frac{1}{N} & \frac{N}{P} & a^{2}
\end{array} \underbrace{1 / 2} \\
& N \gg p \\
& r m s \cong a \quad p
\end{aligned}
\]

The output of a unit impulse generator should then be multiplied by
\[
G=r m s p^{1 / 2}
\]
to insure that the same energy is input to the vocal tract filter as was output by the filter during encoding. The above method for calculating the gain needed during reconstruction is based on the assumption that the prediction error for voiced speech is caused entirely by the physical excitation function of the speaker. However the prediction error may be increased because the vocal tract was changing shape rapidly during the analysis frame or because of background noise at the microphone which would not be removed by the inverse filter. Either of these would cause an unwanted gain increase during reconstruction. A typical voiced speech waveform and the error signal generated from it are shown in figure 10.

\section*{Mbwhmwnwwnannan}
(A) VOICED SPEECH
WAVEFORM
(B) ERROR SIGNAL WAVEFORM

\section*{FIGURE 10 .}

The reliable determination of the pitch period of voiced speech is a problem for which the ideal solution is still undetermined. The periodic increase in the amplitude of the error signal at the pitch period is shown in figure \(10(b)\) and suggests the use of the error signal in pitch period determination. A number of algorithms exist for determination of the pitch period which generally involve various combinations of the following processes.
(1) Raising the error signal to a given power.
(2) Low-pass filtering of the error signal.
(3) Windowing the error signal.
(4) Calculating the autocorrelation function of the filtered error signal.
(5) Picking the peaks of the autocorrelation function.

Experience has shown that pitch determination is computationally as difficult as the LPC parameter
determination and the literature on the subject illustrates the trade-off between hardware, software, computation time and reliability from method to method.

\section*{C. LPC COMMUNICATION SYSTEMS}

A review of existing LPC communication hardware is useful because any method :hich alters formant arid pitch characteristics of speech will be most successful if it is compatable with these systems.

Currently off-the-shelf microprocessors are not fast enough to handle the algorithms described in real-time. However special purpose units which are designed alors computer lines, do meet the real-time criteria. On the surface the word 'computer' might not seam to fit these special purpose machines, but a closer look will reveal that each has components which are the same as those of a computer: stored programing, remory, input, cutput, an arithmetic logic unit (ALU), an instruction set, and control components. Two processors which were developed at MIT's Lincoln Laboratory will be used to illustrate the state of the art in LPC voice terminals and certain similarities in their architecture will be evident. The first processor is the more flexible of the two and is designed to handle a wider varity of algorithms. The second w:as developed about a year later and was designed specifically for LPC algorithms with chly minor changes.

The first processor to be covered is the Lincoln


Digital Voice Terminal (LCVT) which was designed and constructed at the Lincoln, Laboratory during the 1973-75 time frame. This processor is capable of carrying out 18 million basic instructions per second with a \(16-b i t\) by 15-bit multiplication taking fou: times as long. The execution time for each instruction is 165 nsec . which seems to conflict with the instruction rate. This is resolved by the pipelining of the three portions of each basic instruction: fetch, decode, and execute. The processor has separate memories for data and the program. The data memory capacity is 512 16-bit worcis and the program memory contains 1024 16-bit instructions. The pipeline instruction processing requires that the buses to and from the ALU be seperate and each is unidirectional. Figure 11 shows the data paths of the LDVT (none of the control or Eiming lines are shown). There are four active registers: the \(P\) register which is the program counter with multiplexed inputs from the address portion of the instruction, the ALU, the sum of the \(x\) register and the address portion of the instruction, and itself incremented by one; the \(X\) register which is used for indexing memory addresses; the A register which is the accumulator; and the B register which is actually a pair of registers used for input and output.


\section*{FIGURE 11. LDVT DATA FLOW}

The AL! of the LDVT as shown separateiy in figure 12 , has two sections: a standard programmable ALU which performs logical, addition anc compare operations; and a 16-bit by 16-bit multiplier array which provides a 32-bit result in just 4 cycles. Either of these may be used with any input, however due to their common input and output only one may be used at a time.

It is significant to note some of the requirements brought on by the pipelining of the instructions. The device does not have a main bus over which data flows in both directions. Generally all data flow is unidirectional and in the case of the ALU input buffer registers are
needed to hold the data for the instruction being executed while the next instruction may have already read a value from memory and put this on the ALU input line. In addition to LPC al sorithms at 2400,3603 and 4800 bits per second, the LDVT has been programmed for adaptive predictive coding at 8000 bits per second and as a channel vocoder at 2400 bits per second.


FIGURE 12. LDVT ALU
The second speech processor is the Linear Predictive Coding Microprocessor (LPCM) which is disigned strictly as a low cost LPC terminal. The basic cycle time for this machine is 150 nsec. The data memory has 2 K 16-bit words of which 1.5 K is ROM and 0.5 K is RAM. The program memory contains 1 K of 48 -bit words. The LPCM is almost free of
(2)-

\section*{+18 \(-=\)
\(-=-\)
\(-=\)}

\section*{4}
\(1+\frac{2}{4}+\)

\section*{(2)}


\section*{8}
\(\qquad\)
\(\qquad\)
再
\(\qquad\)
instruction decoding, with the only exception being the ALU operation. Figure 13 shows the instruction format and in figure l't it is evident that parts of the instruction register are being input as control functions. Figure 15 is a block diagram of the LPCM and shows the two buses and the large number of registers needed to control the data flow. While these machines have varying degrees of adaptability, it does not appear that either could hande the additional computations descrited in the followirg sections without major hardware modifications. However, a special purpose LPC code converter which could be used in conjurction with an existing terminal could probably be developed which would operate in real-time and not load the existing processor.
\(=\sim\) - \(\begin{aligned} & \text { Constant or address index for use } \\ & \text { by the } C P E\end{aligned}\)



FIGURE 14. LPCM CENTRAL PROCESSOR

V. ADJUSTMENT OF VOCAL TRACT PARAMETERS USING LPC

One reference to voice characteristic modification was found by the author \([\) Atal and Hauneur, 1971]. Although scaling of pitch, formant frequency and formant bandwidth was stated to have been accomplished, no description of the work was given. Other literature did orovide useful information on formant frequencies and pitch periods which are typical for various speakers. It should be noted that there is a considerabiy larger variation, from speaker to speaker, in pitch period than in formant frequencies. As an example, two speakers, saying the same phoneme could easily have pitch periods that varied by a factor of two, yet have only a 10-20 per cent variation in formant frequencies. Different physical structure (vocal cords and the vocal tract) produce these speech characteristics (pitch period and formant frequencies, respectively) and therefore their variation from speaker to speaker is only partially correlated.

The coded information produced from input voice by the LPC processor is very closely related to the physical structure that is producing the sound. On output, speech is reconstructed from the gain, pitch period and voice/unvoiced parameters as well as the vocal tract prediction coefficients. The gain and pitch period can be varied as they stand but the variation of the prediction
coefficients is somewhat more complicated. The goal of varying these coefficients before reconstruction is to have the output voice have different pitch period and formant frequencies while retaining a natural sound and retaining the same information, i.e. the same sequence of phonemes and voice inflection.

Voice characteristics are associated with certain parameters of the LPC code. First, formant frequencies and bandwidths are associated with the LPC coefficients. The amplitude of the output voice is associated with both the gain coefficient and the formant bandwidths. The relationship between output amplitude and the formant bandwidth is due to the increased energy in the impulse response of a narrow bandwidth (high Q) transfer function. This is noted physically by the fact that speakers with highly resonant voices may speak louder for the same amount of energy expended. The pitch period is controled by the pitch period coefficient only. Finally, the voice/unvoiced decission would normally not be changed. The exception would be if one was reconstructing whispered speech (the vocal cords are stationary) from normal speech.
A. ADJUSTMENT OF FORMANT FREQUENCY AND BANDWIDTH

The vocal tract model we are using has all real
coefficients in the z-domain polynomial. Following directly from this is the fact that all poles must fall either on the real axis of the \(z-p l a n e\) or in complex conjugate pairs.

E
正

\(-2=\)

En
\(=\) \(\qquad\)


Each of the complex conjugate pairs is associated with one formant (resonator) of the speech model: The vocal tract transfer function is the product of these resonator transfer functions which are each of the following form
\[
H_{f}(z)=\frac{1}{1-2 e^{-2 \pi(B W)} T_{s}} \cos \left(2 \pi F T_{s}\right) z^{-1}+e^{-4 \pi(B W)} T_{s} z^{-2}
\]
where \(F\) is the center frequency of the formant, \(f\), and \(B W\) is the bandwidth of the formant. The pole locations associated with this transfer function are
\[
z=x \pm j y
\]

This pair of poles must be moved in order to alter the frequency and bandwidth of this resonant section of the vocal tract model, but this must be done carefully so that the poles remain inside the \(z-p l a n e\) unit circle. If the desired modification of the input speech is to reduce the bandwidth (increase Q) of the formants, the poles must be moved closer to the unit circle. If the distance from the center is multiplied by a constant factor, there is a danger of moving poles outside the unit circle and thereby causing instability during reconstruction. However, the magnitude of the pole is always less than one and may be raised to any positive power without danger of crossing the unit circle. It is shown as follows that raising the magnitude to a factor is equivalent to multiplying the formant bandwidth by that same factor.

The transfer function with the complex conjugate poles above is:

\[
H(z)=\frac{1}{1-2 x z^{-1}+\left(x^{2}+y^{2}\right) z^{-2}}
\]

However with the pole locations in polar form
\[
x=A \cos \theta \quad y=A \sin \theta
\]
and making use of
\[
\cos ^{2} \theta+\sin ^{2} \theta=1
\]
the equations becomes
\[
H^{\prime}(z)=\frac{1}{1-2 A \cos \theta^{-1} z^{2}+A^{2} z^{-2}}
\]

Setting the terms of the characteristic equations equal we get
\[
2 A \cos \theta=2 e^{-2 \pi(B W) T_{s}} \cos \left(2 \pi F T_{s}\right)
\]
and
\[
A^{2}=e^{-4 \pi(B W)} T_{s}
\]
when solved for \(A\) and \(\theta\) give
\[
\begin{aligned}
& A=e^{-2 \pi(B W)} T_{S} \\
& \theta=2 \pi F T_{S}
\end{aligned}
\]
and inversely
\[
\begin{aligned}
& F=\vartheta / 2 \pi T_{s} \\
& B N=(-\ln A) / 2 \pi T_{s}
\end{aligned}
\]

If new formant characteristics, \(F^{\prime}\) and \(B W^{\prime}\), are desired where
\[
F^{\prime}=\gamma_{F}
\]
and
\[
B W^{\prime}=\alpha B W
\]
they may be implemented by moving the poles of the characteristic equation so that
\[
\partial^{\prime}=\gamma_{\theta}
\]
and
\[
\ln A^{\prime}=\alpha \ln A
\]
which reduced to
\[
A^{\prime}=A^{\alpha}
\]

This method of implementing the pole shifts guarantees that no unstable poles will be created and is used in the following section in the realization of \(a\) LPC voice modification system.

\section*{3. GAIN ADJUSTIIENT}

The filter coefficients reconstructed from the relocated poles above may not have the same zero frequency gain characteristic as the filter used for inverse filtering during encoding. This situation can be illustrated graphically by the tivo vocal tract transmission characteristics shown in figure 16.


BEFORE PROCESSING
(A)


AFTER PROCESSING (B)

FIGURE 16. FORMANT GAIN


Although the formant frequencies in \(15(b)\) are lower than the corresponding frequencies in \(16(a)\) as was desired, the overall gain was also changed. This would cause the reconstructed speec' to be much softer than desired.

A solution to this probler was to adjust tre excitation function gain used during reconstruction. This adjustment factor would be equal to the ratio of the zero frecuency gains of the original and modified vocal tract filters. The vocal tract has the following z-domain transfer function.
\[
H(z)=\frac{1}{1+\sum_{i=1}^{p} a_{i} z^{-i}}
\]

The above equation can be evaluated at
\[
z=e^{j \pi f_{i} / f_{s}}
\]
to obtain the gain at frequency \(f_{i}\) Evaluating the above transfer function at \(f=0\) yields the following equations.
\[
z^{-i}=1
\]
and
\[
G(0)=\frac{1}{1+\sum_{i=1}^{p} a_{i}}
\]

This equation can be easily evaluated for both the coefficients of the vocal tract transfer function calculated from the input sequence and the coefficients calculated from the altered pole locations. The gain multiplication factor is then multiplied by the energy
measured in the error signal to get the excitation gain to be used during reconstruction.
C. PITCH PERIOD ADJUSTMENT

The adjustment of the measured pitch period may almost go without explanation except to note that if the pitch period is increased and all other coefficients remain unchanged, the output speech would be softer. This is due to the reduced energy (impulses less often) being input to the vocal tract filter and the resulting lower energy in the output speech.

The process of pitch and formant modification was carried out on the IBM 360 computer with the input and output being accomplished on a hybrid system consisting of a COMCOR 5000 analog comouter and an XDS 9300 digital computer. The interface between the XDS 9300 and the \(13 M\) 360 was seven track digital magnetic tape. - All work :was done on five second segments to allow sufficient length for analysis while not using excessive computer processing time.
A. VOICE IHPUT AND DIGITAL SAMPI.ING

The input voice inas recorded on a standard single tract audio tape recorder at \(71 / 2\) inches per second (ips). Recording was done with a high quality microphone in a quiet but not sound-proof room. This digitizing was done at half speed tc allow the digital computer to write the data onto tape without missing any data. This recording was played back at 3 3/4 ios with the output directed to an amplifier of the analog computer. The voice was amplified to a level approoriate for the analog computer (a \(\pm 100\) volt machine). The amolifier output was passed through two forth-order analog filters set at 2350 Hz and 2400 Hz cut off freauencies. The output of the filters was then out into a sample and hold circuit at the inout of a \(14-b i t\)
analog to digital converter. The 14 bits produced were read by the \(X D S 9300\) and placed in the most significant bits of the 24 bit XDS 9300 computer word. This process is illustrated in figure 17.


\section*{FIGURE 17. DATA ACQUISITION}

The sampling rate used was 5000 Hz . However the voice recording was played back at half speed and therefore the equivalent lowpass filter cut off and the equivalent sampling rate were about 4750 and \(10,000 \mathrm{~Hz}\) respectively.

\section*{B. KDS 9300 OPERATION}

The operation of the XDS 9300 during the input phase was simply to read the data available at the output of the analog to digital converter and place this data in an array. When an array of 1024 samples was filled it was written onto a seven track magnetic tape. This was done continuously so that no data was lost between blocks. The voice segment as it existed on the seven track tape consisted of 50 blocks of 1024 samples. Each sample was
recorded in a integer format ranging from +8388607 to \(-8388607( \pm(2 * * 23)-1)\). This tape was then used as the input to the IBM 360.
C. IBM 360 INPUT PREPARATION

When the 24 -bit word, seven track tape created by the XDS 9300 was read by the ISM 360, the machine representation of the values was not correct. This was due to the addition of the eight bits shown in figure 18.

24-Bit XDS 9300 Word

32-Bit Word Read by IBM 360

Corrected IBM 360 Word


FIGURE 18.

The data conversion program (Appendix A.1) was used to read the data from the seven track tape and move the bits of each value as required. The program did not make the conversion from ones complement representation (XDS 9300) to twos complement reoresentation (IBM 360) because any error caused would be well below the 14-bit quantization error. At this point the data was converted to floating point representation with values between \(\pm 100.0\) and the average value of each sequence was calculated and subtracted from each data point. This insured that the input was a zero mean function. Each data sequence was
written into a separate file of a standard nine track \(1 B M\)
360 tape for ease of further handling.
D. SCOPE OF SIMULATION PROGRAM

The goal of this research was to demonstrate the feasibility of voice modification and as a result only certain areas were studied. Specifically, all programming was done with the standard IBM 360 floating-point arithmetic, making no allowance for the effects which would be caused by the shorter word 1 ength and integer reoresentation used in most voice processing systems. Further study of that area is warranted and would be especially critical in the determination of the pole location, which is covered later.

The system degradation by background noise in the input speech was not studied except to note that the voiced/unvoiced deciion threshold would need to be adiusted for a noise environment.

Although the programs were written to allow variation in the order of the prediction, number of samples per frame and samoling interval, these were not varied. A 12 th order voice tract filter was used throughout and proved to be satisfactory. The analysis frame length was 25.6 msec . (256 samoles) and also remained unchanged. In any future use of these programs with a different frame length, attention would be required by the input format to insure that the analysis frame length is an integral multiole of
\(\sqrt{6}\) an
\(\qquad\)
the input record length.
Finally, in the following description of the programs the term 'LPC coefficients' will refer to the coefficients of the vocal tract model filter. The term 'LPC parameters' will refer to the entire set of parameters needed to reconstruct the output speech, i.e. the LPC parameters consist of the LPC coefficients, the gain parameter, the pitch period and the voicing indicator.

\section*{E. LPC ENCODING}

The first step of the encoding process was to determine the filter coefficients. These coefficients were used in the inverse filter for determination of the error signal. The root mean square values of the input and error signals were compared to determine if the frame was voiced or unvoiced. Finally the pitch period was determined for voiced frames. This program is listed in Appendix A. 2 .
1. LPC Coefficient Determination

Determination of the LPC coefficients was done with the autocorrelation method in the subroutine named AUTO. First, the input data, \(s(n)\), was windowed by one of four available windows producing a temporary array, \(t(n)\), of the windowed data.
\[
t(n)=W(n) \times s(n)
\]

The discrete autocorrelation of the temporary array was calculated for the discrete displacements of zero to the predictor order, p.
\[
\begin{aligned}
& R(j)=\sum_{i=1}^{N-j} t(i) t(i+j) \\
& \quad 0 \leq j \leq p
\end{aligned}
\]

The next step was the solution of the following matrix equation.
\[
\begin{aligned}
& \sum_{j=1}^{p} R(|i-j|) a_{j}=R(i) \\
& \quad 1 \leq i \leq p
\end{aligned}
\]

The auto correlation matrix in always positive definate, symetric and all values along a given diagonal are equal. A particularly efficient method of solution is available. This method is attributed to Durbin |Makhoul, 1975| and is implemented in subroutine COEFF. Durbin's algorithm is recursive and calculates the predictor coefficients for the Kth order from the coefficients for the \((k-1)\) th order. The \(j\) th coefficient for the \(k\) th order predictor is \(a_{j}(k)\). The recursion formulas follow.
\[
\begin{aligned}
& E(0)=R(0) \\
& a_{j}(k)=\left[R(j)-\sum_{i=1}^{j-1} a_{i}(j-1) R(j-i)\right] / E(k-1) \\
& a_{j}(k)=a_{j}(k-1)-a_{k}(k) a_{k-j}(k-1) \\
& 1 \leq j \leq p
\end{aligned}
\]

\[
E(k)=\left(1-a_{k}(k)^{2}\right) E(k-1)
\]
\(E(k)\) is the prediction order error resulting from limiting the predictor order to \(k\).

During the programming of COEFF the subroutine TEST was written to perform and print the results of the matrix multiplication. During the initial testing of the program various window functions were used in AUTO, however the prediction order error did not change significantly with the window function used.

Certain researchers have noted that a lower order filter may be used during unvoiced speech. If this is desired, the coefficients for the lower order filters could be stored during the recursive steps of the algorithm above and later, when the frame is determined to be unvoiced, the lower order filter coefficients would be available without further calculation.

The coefficients, \(a_{i}\), used in the main program are the coefficients of the characteristic polynomial of the filter with a assumed to be unity.
\[
H(z)=\frac{1}{\sum_{i=0}^{p} a_{i} z^{-i}}
\]

Therefore the negitive of the values calculated in COEFF were returned to the main program.

\section*{2. Error Signal Determination}

The error signal, en), is determined by subtracting the predicted sample value, \(\hat{s}(n)\) from the actual value, \(s(n)\).
\[
\begin{gathered}
e(n)=s(n)-\hat{s}(n) \\
s(n)=-\sum_{i=1}^{p} a_{i} s(n-i) \\
e(n)=s(n)+\sum_{i=1}^{p} a_{i} s(n-i)
\end{gathered}
\]

This operation is carried out by subroutine ERR. In order to make a correct error determination at the begining of each frame, a number of samples equal to the order of the predictor were saved from the end of the previous frame. This eliminated additional error signal energy caused by poor begining of frame prediction and reduced the possibility of an incorrect voicing decision. Another possible solution to this problem would be just not analyzing the error for the first few samples of each frame and making the appropriate changes in the following routines that use the error signal.

\section*{3. Voicing Decision}

A comparison of input signal energy and the error signal energy was used to determine if a particular frame is voiced or unvoiced. Although the root mean square value of each set of data is actually proportional to the square
root of the energy in the signal, the root mean square value was used in this comparison. Whenever the root mean square value of the input signal divided by the root mean square value of the error signal was greater than a threshold value, the frame was determined to be voiced and the voicing indicator was set to one. Otherwise the voicing indicator was set to zero.
4. Pitch Period Determination

The error signal was used in subroutine PITCH for determination of the pitch period of each voiced frame. First the error signal was passed through a recursive 5 th order Butterworth filter with an 800 Hz cut off, to smooth the signal. Extra samples of the error signal and filtered error signal were saved from frame to frame (zeroed during unvoiced frames) to insure a correct filtered error signal at the begining of each frame. The degradation of the system if this was not done was negligible but plots of the filtered error signal would have shown discontinuities at the begining of each frame if this had not been done. The frame was windowed to eliminate end effects and the autocorrelation function of the filtered error signal is calculated. The portion of the autocorrelation function from 12 to 180 samples was searched for peak values and the pitch period set equal to the location of this peak. Figure 19 shows a typical autocorrelation function and the portion of the curve searched for the peak value. The peak picking algorithm checked to insure that the value chosen
was not on the downslope of the center peak and was not a minor peak with a larger peak at a longer pitch period.


\section*{FIGURE 19.}

Although this pitch determination algorithm worked satisfactorily in this program it is probably not as accurate and flexible as certain other, more complicated techniques available. It was used only for pitch periods from about 3 to 9 msec., but was satisfactory for them.

\section*{F. LPC PARAMETER MODIFICATION}

The purpose of the program was to demonstrate the modification of voice characteristics. The system was designed so that only the LPC parameters were needed to make the desired modifications. No other measurements of the input speech are needed. Of the parameters calculated from the input speech, only the voicing indicator remained unchanged. The LPC coefficients are varied as required by the desired formant frequency and bandwidth changes require. The pitch period is varied separately and the gain
is adjusted to correct for changes caused by formant bandwidth modification.
1. LPC Coefficient Modification

The modification of the LPC coefficients is
accomplished by three subroutines: POLES, ALT, and NEWCF. Subroutine POLES calculates the z-plane pole locations from the LPC coefficients. Subroutine ALT changes the locations of the poles according to the various scale factors specified by the main program. The new predictor coefficients are calculated by subroutine NEWCF.

The predictor coefficients, \(a_{i}\), are provided to subroutine POLES to get the p order z-domain polynomial which is factored into its component roots, the z-plane poles of the vocal tract filter. This factorization is done with library routine ZRPOLY which was sufficiently accurate and produced complex conjugate pairs which were exact complex conjugates. This simplified the problem which came up later, of separating the real poles and the complex conjugate pairs so that the proper scaling factor could be applied to each. The input polynomial had all real coefficients and therefore all the roots are real of in complex conjugate pairs. These poles are placed in a complex array and returned to the main program.

The subroutine ALT was provided with the complex array of pole locations and it separated them into separate arrays of real and complex poles. Each complex conjugate pole pair was entered as one entry in the complex pole

array. The scaling factors provided to subroutine ALT consisted of:
(1) FSC - Formant frequency scaling factor
(2) BSC - Formant bandwidth scaling factor
(3) RSC - Real pole scaling factor
(4) RLIM - Real pole magnitude limit
(5) SP - Sampling period

The polar coordinates were determined for each pair of complex conjugate poles and the magnitude, \(A\), and angle, \(\theta\), of each were considered separately. The magnitude was raised to the power of the bandwidth scale factor and the angle was multiplied by the frequency scale factor.
\[
\begin{aligned}
& A^{\prime}=A^{B S C} \\
& \theta^{\prime}=\theta \times F S C
\end{aligned}
\]

The modified magnitude, \(A^{\prime}\), and angle, \(\theta^{\prime}\), were used to determine the complex location and the calculated pole and its conjugate were put in the pole vector for output. During the alteration process each complex pair of poles was checked against a constant magnitude of 0.98 to insure that numerical instability or repeated impulses would not cause excessively large outputs.

Each real pole was multiplied by the real pole scale factor and checked to insure that the magnitude was less than the limit prescribed. The effects of varying the real poles was not studied and a real pole limit of 0.95 proved to guarantee sufficient damping of the output to
provide a nearly zero mean output.
The poles from both the real and complex pole arrays were combined into one array for return to the main program. Subroutine ALT also provided graphical and printed output of the pole locations, before and after modification when this was desired. Figure 20 is an example of the graphical output which shows the \(z-p l a n e\) pole locations before and after modification, in relation to the unit circle.


Subroutine NEWCF performed the task of multiplying the poles to calculate the coefficients of the modified
characteristic equation for the vocal tract filter. This operation was done in double precision arithmetic because the predictor coefficients being calculated often differed by only small amounts. This process would require close study before this system could be implemented on a short word length processor.

\section*{2. Pitch Period Modification}

The pitch period was modified in the main program and consisted only of converting the pitch period (an integer) to floating point representation, multiplying by the pitch period scale factor, and reconverting to fixed point representation. Although changing the pitch period is relatively simple, a number of other changes are caused by modifying the pitch period. If the pitch period is shortened the gain must be reduced to make up for the increased energy being input to the vocal tract filter. The relationship between the pitch period and the formant bandwidth also requires further study. It appears that the formant bandwidths (Q's of the vocal tract resonators) should produce a impulse response which is significantly attenuated by the time the next impulse is input to the filter. There is most likely a feedback effect between the vocal tract resonators and the vocal cords vibration rate which is not considered by the model used. This effect is noted in the graphical output as sharp discontinuities at the point where each new impulse is generated.
3. Gain Adjustment

Although overall gain of the system can be adjusted easily at the output, the relative amplitude from frame to frame must be retained during the processing. The gain coefficient, root mean square of the error function, is adjusted to account for the change in the energy of the vocal tract impulse response brought about by the bandwidth changes. As was described earlier the ratio of the original and modified vocal tract filter gain a zero frequency is used to estimate the ratio of inpulse response energy. Although this is not strictly true, as long as the scaling factors are limited to those which produce realistic speech sounds, this appears to work very well. The zero frequency gain of the original vocal tract filter, \(G(i n)\), is calculated before the LPC coefficients are modified.
\[
G(i n)=\sum_{i=0}^{p} a_{i}
\]

The value of both \(a_{0}\) and \(a_{0}^{\prime}\) is unity. After the coefficients are modified the same calculation is performed again.
\[
G(\text { out })=\sum_{i=0}^{p} a_{i}
\]

The root mean square of the error signal, rms(E), is multiplied by the ratio to obtain the new gain coeffisient,
rms'(E).
```

rms'(E) = rms(E) }\times\textrm{G}(\textrm{in})/G(out

```

\section*{G. SPEECH RECDNSTRUCTION}

Reconstruction of the sampled speech waveform, from the modified LPC parameters is accoriplished by subroutine RECCN. This routine not only decodes both voiced and unvoiced speech, but also makes allowance for the transition of varying parameters from frame to frame. The LPC parameters from the previous frame are saved between calls to subroutine COEFF and are used during the current frame when needed. It is also necessary to save output values from the previous frame to allow the recursive calculation of the output values at the begining of the current frame.

\section*{1. Unvioced Speech}

During continuous unvoiced speech (as opposed to the previous frame being voiced) the new LPC parameters are used immediately upon entry to subroutine RECON. The excitation function is determined by calling a library routine GGNOF which returns normally distributed random numbers with zero mean and a variance of unity, and multiplying the value returned by the gain parameter. The excitation function is changed for every output sample to simulate the continuous excitation caused by turbulent air in the vocal tract. The vocal tract filter is implemented by the recursive addition of past values of the output to
the excitation function. The \(z\)-domain transfer function
\[
\frac{s(z)}{e(z)}=\frac{1}{1+\sum_{i=1}^{p} a_{i} z^{-i}}
\]
is implemented with the discrete time function
\[
s(n)=e(n)-\sum_{i=1}^{p} a_{i} s(n-i)
\]
where \(s(n)\) is the output sample and \(e(n)\) is the excitation function.
2. Voiced Speech

During voiced speech a certain amount of continuity must be maintained from frame to frame. This was accomplished by allowing any \(\lrcorner\) ncompleted pulses from the previous frame to finish before the parameters are changed. linmediately upon entering the subroutine during voiced speech the pulse period counter is tested to see if it is equal to the former pulse period. If the former pulse is not complete the routine goes ahead and recursively calculates the cutput values. Upon completion of a pulse from a former frame or any pulse during the current frame, the new LPC parameters are used to replace the old one. There was a direct replacement for all parameters except the gain coefficient. The geometric mean of the old and new gain coefficients is used for the gain on the current pulse and the old sain replaced with the gain just calculated. This provides for the difference between the old and new
gain parameters to decay exponentially but prevents sharp changes in amplitude from frame to frame and make the output speech more natural.
3. Transition Frames

If the current frame and the previous frame were not of the same type care must be taken to insure that all parameters are changed together. If LPC coefficients for unvoiced speech were used with a pulsed output an unnatural sound would be likely to be produced. During the transition from unvoiced to voiced speech, the retaired values from the previous frame are normally small in comparison to the amplitude of the pulsed excitation function. Therefore the voiced speech production may begin immediately. When the opposite is true, the large amplitude samples near the begining of a output pulse are significantly larger than the unvoiced excitation values. Therefore whenever unvoiced speech follows a voiced frame, the previous output pulse is allowed to finish. The damping that occurs during the voiced pulse normally reduces the magnitude of the samples near the end of the pulse to the point where they will not interfere with the unvoiced speech to follow.
H. OUTPUT PROCESSING

The reconstruced speech samples are output onto a standard nine track \(1 B M 360\) magnetic tape. These values Were later input to a data conversion program (Appendix
2
电
U－

\author{
\(=\)
}

4－

\author{

}
3 ..... 家
A.4) which converted the floating point values to integers which were in the proper format for the XDS 9300 and within an appropriate range for the \(X\) DS \(9300^{\prime}\) s digital to analog converter. The necessity of using a seven track tape for data transfer still existed, so the significant bit of the integers had to be shifted into the proper pcsition so that none of the eight bits dropped during the writing of each value onto the seven track tape would effect the data.

This tape was input to the XDS 9300 which viz the digital to analog converter made the samples available on the COMCOR 5000 in analog form.

These samples were output at a rete of 5000 per second thru a sample and hold circuit. Again two low pass filters were used to remove the time quantization noise from the samples. The analog waveform was recorded at \(33 / 4\) ips on a standard tape recorder which could be played at \(71 / 2\) ips to hear the reconstruced speech.

\section*{1. GRAPHICAL OUTPUT}

The programs described above were also able to produce a varity of graphical outputs to assist the researcher in following the signals through the LPC processing. The waveforms available from these programs are:
(1) Input speech
(2) Error signal before filtering
(3) Error signal after filtering
(4) Reconstructed output speech

The z-plane pole locations determine the formant frequencies and bandwidths and were also available for graphical display. A seperate program (Appendix A.3) was written to display the logarithmic power spectral density of the input and output speech for a number of consecutive frames and proved useful in analysis of the output quality.

The desired result of this study was the reconstruction of speech at different pitch and formant frequencies than that of the input speech. The complete process of encoding, modification and decoding was accomplished for three 5 -second segments of speech. Upon completion of the process most listeners agreed that although the input speech was female, the modified output speech sounded typically male. Although the audio output was somewhat lacking in quality it was intelligible.

Examples of the printed and graphical computer output are given in Appendix \(B\). Two examples are completely covered. The first 384 msec . segment (15 frames) is of the vowel 'e' and the second segment is of the transition from a fricative to a voiced sound, 'sa', from the begining of the word salt. Both were derived from a recording of a female speaker were reconstructed first wi thout modification and then with modificaations which consisted of reduction of the pitch frequency by a factor of 0.58 and reduction of the formant frequencies by a factor of 0.88 . First the input waveform with the logarithmic power spectral density plot of that portion of the speech is given. Examples of the printed processing summary are next and are followed by the waveforms of the error signal and the filtered error signal. Plots of the vocal tract pole
 Z \(=\)
\(\qquad\)
\(\qquad\)

\footnotetext{
\(=\)
} \(=\)
\(\qquad\)

\author{

}
\(\qquad\)

\(\qquad\)

\(+1\)
\(+2\)

\(14 \sqrt{6}\)
1
locations are shown with the poles at input superimposed on the poles after modification. Finally, speech waveforms for both unmodified and modified output with their respective logarithmic power spectral density functions are displayed. The audio output is available from the author on request, in the form of an audio tape recording. This tape recording is described in detail in Appendix C.

The results above demonstrate the feasibility of the use of linear predictive coding as a technique for voice modification. This research also indicated areas in which further study and improvement may be made. Some of these areas are:
(1) The effect of noise during voiced speech on the prediction error and on the gain calculated from the error. It may be possible to use only the energy occuring at the peaks of the error signal and thereby attribute the remainder of the error signal as being due to noise.
(2) The effect of the use of different window functions in autocorrelation function calculation and how this variation effects pitch period determination and the voicing threshold.
(3) The possibility of constructing a LPC processing system with asyncronous clocks for the frame timer and the output sample gereration. This would produce a very similar effect to that accomplished here, but probably at a reduced cost.

With the refinement and standardization of LPC commuication processors, the ratio of processing time to real time for unaltered communication is expected to drop below the current \(65 \%\). The available computation time may be used for the pitch and formant alteration described above or for other modification which can be accomplished at either the transmitting or receiving processor and still allow real time voice communications.

A number of possible applications of the speech frequency characteristic modification described are:
(1) A digital hearing aid for persons (such as the author) with high frequency hearing loss.
(2) Radios in military vehicles which would produce speech in a frequency range different than the range of the predominant noise in the vehicle, i.e. low pitch voice in turbine aircraft with high
frequency noise and high pitched voice for helicopters and tanks where low freauency noise is most prevalent.
(3) Voice channel jammers which would produce random phonemes with pitch and formant characteristics similar to the current users of the channel.

As LPC communications systems become common because of their low data rate requirements, the use of the LPC parameter modification will be desired to extend the flexiblity of voice communication and storage systems. Frequency modification is one viable process available.
```

 DIMENSI ON IDAT(1024); CAT (53248)
 12 READ(2,15,END=2OO, IO
 10 REAE 2,I5,END=200,ERR=601 IDAT
 FJRMATG1 2 &(8A4),
 JJ=(J-1)#1024
 SUM = O.0 , 1024
 DAT(IIT)
 SUM = SUM FLOAT(IDAT
 SUM = SUM/1024.
SUM E (6, S5)024, (
* * HAS BEEN READ*1)
IF (J.LE.{) WFITE(5,30) K,SUM,(DAT(L), L=1, 1024)
IF (J.LE.I) WRITE(6,31) IDAT
FORMAT(IX,8I!5)
* 'GSUM RECDRDS HAVE BEFLDAT (J)
DO S5 J=1,5\$200
CONTINUE
WRITE(4,98) (DAT(L),L=1,51200)
98 FJRMAT(I28A4)
\$
60
ENIFILE 4
GJRMAT(:% *

```
LINEAR PREDICTIVE CODING AND SPEECH MODIFICATION pregran
SAMPLEC SPEECH IS INPUT VIA FILE FTO2FCOI ITAPE OR DISKI IN FORMAT \(128 A 4\) FOR EFFICIENT STORAGE SPEECH IS ENCODED INTO LPC CONSISTING OF PITCH PERIOD (RMP), VOICEDMUNVOICED ANECISION (IVC COEFICIENTS (A(I)
MODIFICATIONS TO CHANGE POLE POSITIONS MAY BE SPECIFIED SAMPLED SPEECH IS RECONSTRUCTED AND CUTPUT ONTO FILE
PROGRAMMED BY G.T.HALL, 1578
DI MENSION X (255), A(14), XX(14), E(256), XO(256)
DIMENSION EF 256 ), ES(5), EFS \((5)\), ZERC(256)
COMPL EX P P (14)
SET VOICE/UNVOICE THRESHOLD
THRESH \(=2.05\)
IWIA \(=1\)
SET ORLER OF PRECICTDR
\(I P=\$ 2\)
plotter output

\(\operatorname{IXPLT}={ }^{\top} \quad 10\)
SET IWRXX=§ FOR FRIMTEC RESULTS FROM SUQ

SET MOCIFICATIONS DES IRED
(FSC) FREQUENCY SCALE COEFF
(SSC) BANDWIDTH SCALE COEFF
(PSC) PITCH PER IDD SCALE COEF
(RSC) REAL POLE SCALE COEFF
(RLIM) REALPOLE MAGNITUDE LIMIT
(RLIM) REAL POLEMAGNI
(SP) SAMPLING INTERVAL
FSC \(=0.88\)
\(8 S C=0.03\)
PSC \(=1.73\)
RSC \(=1.0\)
RLIM \(=1.0 .95\)
\(S P=0.0001\)
non
SET NUMBER OF SAMPLES PER FRAME
\[
N=256
\]

SET NUNBER OF FRAMES (NFRAME) AND NUMBER OF FR. AMES SKIPPED BEFORE FIRST ANALYZED

NFRAME \(=15\)
ISKIP = \({ }^{2}{ }^{2}\)
READ \((2,15\), END \(=999)(X(J), J=i, N)\)
CONTINUE
DO \(200 I=1, N F R A M E\)
READ \((2,5, E N D=999)(X(J), J=1, N)\)
FORMAT \((128 A 4)\)
IF (IXPLT.EQ.1) CALLVPLT(X)
determine rms value of speech samples
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
CALI RMS (X,N,RMSX) \((6,201\) I, RMSX \\
FORMATI:IFRAME , I4//IX, RMS VALUE OF SAMPLES = F 18.8)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

DETERMINE PREDICTOR CCEFF EY AUTJCORRELATION METトJD
CALL AUTO (X,N,A, IP, IWIN, IWRAUT)
IF (IWR.EQ. 1 ) MRIfE( 6,21\()((J, A(J)), J=1, I P)\)
21 FORMAT (/IX,'PREDICTCR COEFFICIENTSI/(IOX,I3,1X,FI3.8))
DETERMINE ZERO FREQ GAIA CF VOCAL TRACT TRANS FCA
\(E I N=1.0\)
\(O N^{2}=1, I P\)
\(G I N=G I N+A(J)\)
GIN = \(1.0 / G I N\)
IF (IWR \(\cdot E Q\) Q 1 ) WR ITE \(\left(E, \frac{2}{2}\right)\) GIN
DETERMINE POLES OF CHARACTERISTIC EQUATION
CALL POLES (A,IP,P,IWRPOL,ICK)
INVERSE FILTER SAMPLES TO GET ERROR SIGNAL

FORNATIIX,IOFI2.4)
DETERMINE RMS VALUE DF ERROR
CALL RMS (E,N, RMSE)
IF ( 6,30 ) RMSE
FORMAT(IIX, RMS VALUE OF ERROR = 1,F18.8)
RATIO = RMSX/RMSE

TEST IF VOICED CR UNVOICED
IVF \(=\) O
IF (RATIO.GE, THRESH) IVF \(=1\)
IF IVF.EQ.IT WRITE (G, 41 )
41

IF UNVCICED BYPASS PITCH DETECTION


IF (IXPLT.EG.3) CALL VPLT(EF)


SUBROUTINE AUTO (S,N,A,IP,IWIN,IWR)
OETERMINE LINEAR PREDICTIDN COEFFICIENTS FOR A SET OF INPUT SAMPLES USING THE AUTOCORRELATICN METHOD
\(S=V E C T O R\) TF INPUT SAMPLES
\(A=V E C T O R\) JF PREDICTOR CJEFFICIENTS
IP \(=\) NUMBER OF PREDICTCR CEEFF I ORDER CF MODEL I
IWIN = TYPE OF WINDOW (SEESUBR WINDOW '
REF: MAKHOUL: LIAEAR PREDICTION
OIMENSION S(1), T(512),R(16), A(1)
CALCULATE AUTOCORRECATIEN


\(N N=N-j\) SOM \(20 \quad I=1, N N=T(I) \neq T(I+J)\)
\(R(J)=\) SUM
20
30

SOLVE MATRIX EQN FOR A VECTOR
CALL COEFF (RO,R,IP,A,IWR)
TAKE MEGITIVE OF PREDICTOR COEFF TOGET
COEF OF CHARACTERISTIC EQN OFFILTER
\[
00 \text { SCI }=1, I P
\]

SLBROUTINE COEFF(RO,R,N,A,IWR)
SOLVES THE MATRIX EQUATION RR \(A=R\)
RR \(=\) AUTOCORRELATIDN MATRIX

R(N-1) R(N-2) RiN-3).....R(0)
\(R=\) AUTOCORRELATION VECTOR
\(R=R(I)\)
R( \(\frac{R}{2}\) )
R(N)
\(A=V E C T O R\) OF PREDICTDR COEFF
\(A\left(\frac{1}{2}\right)\)
\(A(3)\)
\(A(N)\)
METHOD ATTRI BUTED TO DURBIN AS DESGRIEEC IN 75
ค. 566
DIMENSION AK (20), AO (20), A (20),R(2C)
FIRST ITERATION

\(\begin{aligned} & E(1)=A K(I) \\ & E\end{aligned}=11.0-\Delta K(1)\)
\(\left.\begin{array}{ll}E O \\ A O \\ E\end{array}\right)=A(1)\)
FJLLOWING ITERATIONS
\[
\begin{aligned}
& \begin{array}{l}
00100 I=2, N \\
\text { IMI }=I-1 \\
S U M=0.0
\end{array} \\
& \mathrm{DO}_{\mathrm{iN}} \mathrm{SO}_{\mathrm{S}}=\mathrm{J}=\mathrm{j} 1, I M 1 \\
& \text { SUM }=S U M+R(I M J) \neq A Q(J) \\
& \begin{array}{l}
\text { CONT INUE } \\
A K(I)=A(R(I)-S U M) / E C
\end{array}
\end{aligned}
\]
\(C O 30 J=1, I M 1\)
\(A M J=I-J\)
\(A(J)=A D(J)-A K\)
30

\(A D(J)=A(J)\) I
50
10
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
CJNTINUE
AI I

PRINT E (REMAININGERROR DUE TD LIMITING
ORDER CF APPROXIMATION) AND A CHECK CF SOLUTION IF DESIRED

10!
\[
\begin{aligned}
& \text { IF IWR.EO.II CALL TEST (A,RO,R,N) } \\
& \text { PETURN }
\end{aligned}
\]

\section*{SUBROUTINE TEST (A,RO,R,IP)}

MULTIPLIES PREDICTOR CCEFF VECTOR \(\quad\) A BY TYE AUTOCORRELATION MATRIX RR AND CHECKS THE VALUE AGAINST THE AUTOCORRELATION VECTOR TO inSURE ACCURATE SOLUTION.
```

DIMENSION A(IF),R(IP)
SUM $=0 . \overline{1}=1, I P$
LO $={ }^{9}$ IABS $=1, I P$
IF (L.EG:O) SUM $=$ SUM $+A(J) \neq R O$
WRITE (6:? $51, I, R(I)$, SUM

```
    SLBROUTINE POLES (A,IP,P,IWR,ICK)
    CALCULATES PQLES OF CHARACTERISTIC EGN FROM
    ORECICTJR COEFFICIEN
    \(A=\) VECTOR OF PREDICTOR COEFFICIENTS

    \(\begin{aligned} \text { IWR } & =0 \text { NO PRINTING OF POLES } \\ \text { ICK } & =0 \text { ALL POLESINSIDE UNITCIRCLE } \\ & =1 \text { POLE OUTSIDE UNIT CIRCLE }\end{aligned}\)
    DIMENSION A (1), B(21), X(20), Y(20), NAME(20)
    COMPLEX P(I)
    B(1) 10 I 100
        \(11=I+1\)
 CJNTINUE
RETURN

\section*{}
\(=\)

SUBROUTINE ERR (S,N,A,IP,E,SX) QETHEEN AC TUAL SAMPLE VALUES AND THE VALUES PREDICTED FROM PAST SAMPLES.
\(S=V E C T O R\) OF SANPLES
\(N=N U M E E R\) OF SAMPLES
\(A=V E C T O R\) OF PREDICTOR CDEFF
IP \(=\) NUMBER OF PREDICTOQ COEFF
\(E_{S}=V E C T C R\) OF ERROR VALUES
\(S X=\begin{aligned} & \text { EXTRA SAMPLES } \\ & \text { SAVED FROM I IP OF THEM }\end{aligned}\)
THE ERROR IN THE DIFFERENCE BETNEEN THE
CURRENT SAMPLE AND THE WEIGHTED SUM OF THE LASTIP SAMPLES.
DIMENSION S (1), A(1), E(1),T(542),SX(1)
\[
E(I)=S(I)+S U M
\]
\[
\begin{aligned}
& \text { E(I) = S } \\
& \text { CONTINUE } \\
& \text { RETURN }
\end{aligned}
\]
RETURN
END

SURROUTINE PITCHIN, E, EF, ES, EFS, IPP, IWRI
DETERMINES PITCH PERIOD (IN NUMBER OF SAMPLES)
FRGM THE ERROR SIGNAL OF INVERSE FILTERED SPEECH
\(N=\) NUMBER \(J F\) SAMPLES
\(E=E R R O R\) VECTOR
\(E F=F\) ILTERED ERRCR VECTOR (OUTPUT)
ES = FIVE SAVED ERROR SAMPLES
EFS = FIVE SAVED FILTERED ERROR SAMPLES
IPP = PITCH PERICD (OUTPUT)
IWR = \& FOR PRANTING OURING SUBROUT INE
DI MENSION ES (5), EFS (5), E(I), EF(1),R(256)
IMENSION XI (261), XO\{261)
FORM FILTERING VECTOR \((N+5)\)

ITEMP \(=N+5\)
DO 15 I \(=6\), ITEMP
1I=I-5
OJNTINUE
- 20 =6,ITEMP

BUTTERWORTH DIGITAL FILTER CUTOFF AT 800 HZ


CトECK FJR PEAKS 1.2 TO 13. C MSEC
ITEMPC=N-56
IF (IWROEQ.I) WRITE \((6,33)((E F(L), X O(L)), L=1, N)\)
DO SO I=I, ITEMPC.5)
SUM \(=0.0\)
ITE \(+P A=N-I\)
\(00 \mathrm{CO} \quad J=1\), ITEMPA
\(S U M=S U M+X D\)
\[
\begin{aligned}
& \text { SUM=SUM+X } \\
& \text { CONTINUE }
\end{aligned}
\]

R(I) SUM



50
```

ITEMPB=I-34
CO $45 \mathrm{~J}=$ IT EMPB, I
IF(R(ITEST).LT•R(J)) GO TO 50
IPPOONTINUE
WR TETST
FORMAT $\mathbf{q}^{\prime 6}$ PITCH PERIOD IS', I4)
RETURN
RNTINUE
$1 P P=100$
hRITE(6,55)

* FORMATIM/, SLB PITCH FAILED TO DETERMINE CORRECT'
RE TURN
EVD

```

SUBROUTINE ALTZ (P,FSC,BSC,RSC,RLIM,SP,IP,IWR,IXPLT)
GIVEN IP COMPLEX POLES CF THE VOCAL TRACT
FREGUENCIES AND EANDNIDTHS AND SCALES THEM
AS DESIRED. PRINTED OUTPUT IS AVAILABLE.

OIMENSICN FORF (14), EN (14)
COMPLEX P (I), CPP(I4),CRP(14), CTEM
DATA XP/3.0,? \(75,-2.75,0.0,0.0,2.51\)
DATA YP/BO.O, C.0,0.02?.75,-2.75,0.01
LATA IIPEN/-3,3,2,3,2,3/
IERC=O.O.NE.5) GO TO 9
NDEN \(=3\)
CALL
NEWPEN(NPEN)
COLL PLOUT (XP(I), YP(I), IIPEN(I))
IPEN \(=2\)
TEM \({ }^{4}=1=1,241.18 *\) LOAT(I)
\(X X=2 \cdot 5 * C D S(T E M)\)
CALL PLOST \({ }^{*}\) SIN(TEM)
CJNT INUE

\(H I E G=0.25\)
\(A N G=0.0\)
NC 11 =̄T \({ }^{-9}\)
NPEN
CHLL NEWPEN(NPEN)


CONTINUE
\[
\begin{aligned}
& \operatorname{IRP}=0 \\
& I C P=0
\end{aligned}
\]

TEST EACH PJLE AND PLACE IN PROPER ARRAY
```

 DO 40 I =1. IP
 IF AIMAG P(I) EQ EQ:0.0) GO TO 30
IFICABSID, ICP
CONTINUE
$I C P=I C P+?$
$C D P(I C P)=P(I)$
CPP ICP)
GO ID 40
IRP $=I R P+1$

```
```

 CRP(IRP)= P(H)
 CALCulate formant fREQ aND BANDW IOTH FOR EACH
 DO jO I= I= P;ICP
 BW(I)=(0.0-ALDG(A))/(o. 2831 352*SP)
 TH=ATAN2(AIMAG(CPP(I)), REAL(CPP(I)))
 TH=ABS(TH)
 CONTINUETH/(SP*6.283185?)
 ICPMI=ICP-I
 [P]=I+1
 IF(FORF(I).LT.FORF(J)) GD TO 55
 TEM=BW(I)
 BW(I)=8W(J)
 BW(J)=TEM
 FORF(I)=FORF(J)
 FORF(J)=TEM
 CTEM=CPP(I)
 CPP(J)=CT
 continue
 IF(IWR.EQ.I) WRITE(6,70) ((I,CPD(I),FORF(I),BW(I)),
 * I=1,ICP)
 FORMAT ('FFORMANT',IM,' DUE TO POLES,AT Z=',F8.&'{
 IF (IRP.EQ:O) GJ TO }8
 IF (INRAEQ:I) WR IT E\G,BO) ((I,CRP(I)),I=1,IRP)
 IF(IWR.EQ &) WRITE (S,OO)FSC,BSC,RSC,RLIM,SP, FQ.4,
 # % SANOWIOTH SCALEFACTOR = F,F8.4/
 * ' SAMPLE PERIOD =',Fg.S//1 AFTER MODIFICATION')
 80
 ALTER FDRMANT FREQUENCIES ANO BANDWICTHS

```
```

$$
T H=A T A N 2(A I M A G(C P P(I)), F E A L(C P D(I))) \neq F S C
$$

$$
\begin{aligned}
& \text { THEABS } \\
& \text { (DO }
\end{aligned}
$$

$$
C P P(I)=A * C M P L X(C O S(T H), S I N(T H))
$$

$$
\text { BNI } 1=(0 . C-A L O G(A)) /(6,2831352 * S P)
$$

$$
\begin{aligned}
& B N(I)=(0 . C-A L O G(A)) /(6 \cdot 28 \\
& F F R(I)=T H /(6.283 i 852 * S P)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FJRF }(I)=T \\
& \text { CJNTINUE }
\end{aligned}
$$

```

\section*{alter real pole locat ions}
```

If IIRP.EQ. O) GO TO 115
$C R P(I J=C R P \prime I) * R S C$
$T E M=C A B S(C R P\{I)$
IF (TEM.GT•RLIM) CRP(I)=CRP(I)\#RLIM/TEM

```
```

110 CONTINUE

```
110 CONTINUE
    IF(IWR.EQ.1) WRITE(6,70) ((I,CPP(I),FORF(I),Bh(I)),
    IF(IWR.EQ.1) WRITE(6,70) ((I,CPP(I),FORF(I),Bh(I)),
        * I=1,ICPj
        * I=1,ICPj
    IF (INP.EEQ.O) GO TO ITI8) ({IN,CRP([)),I=1,IRP)
    IF (INP.EEQ.O) GO TO ITI8) ({IN,CRP([)),I=1,IRP)
\(I V O=0\)
\(D O\) I \(20 \quad I=1, I C P\)
IND \(=1 N D+1\)
\[
\begin{aligned}
& \begin{array}{l}
C D 100 I=1, F C P \\
A=C A B S(C P P(I))=\# B S C \\
I F A . G 1.0 .99) A=0.99
\end{array} \\
& \text { IFIA.GT.0.98) } A=0: 99
\end{aligned}
\]
```

P(INO)=CPP(I)
I ND $=$ I ND +1
P(IND)=CONJG (CPP (I))
CONTINUE
IF (IRPIEQ.ORGO TO 135
DO 130 I $=1, I R P$ INC=IND+1
P(IND)=CRP(I)
CONTINUE
IF (IWR.EQ.1): WRITE (6,140) IND
FORMATIIOX,'RECON PQLES',I4)
IF (IXPLT.NE.5) RETURN
C
ITEXT $=3$

$Y Y=\frac{2}{2} 5^{*} A I M A G(P(I))$
CALL SYMS OL (XX,YY, HEIG, ITEXT, ANG,NC:
IPEN $=-3$
$X X=5: 0$
YY $C A L$ L PLOT ${ }^{0}(X X, Y Y, I D E N)$
RETURN

SUBROUTINE NEWCF (IP,P,A,IWR)
DETERMINES THE COEFFICIENTS OF THE OF PREDICTCR POLYNONIAL FROM TH

IP = ORDER OF THE POLYNOMIAL
$P=C Q M P L E X ~ R O O T S ~ O F ~ C H A R A C T E R I S T I C ~ E G N ~$
$A=A R R A Y$ OF REAL COEFFICIENTS
INR = 1 FDR PRINTING DURING SUBROUT INE
IF ALL COMPLEX ROOTS ARE IA CONJUGATE FAIRS
ALL OF THE COEFFICIENTS SHCULD BE REAL

CONFLEX*1S PP(14), AA(14)
COMPLEX*3 P(IP)
REAL +4 A(IP)

$$
K=\mathrm{CONT}^{\mathrm{K}} \mathrm{~g} \text { IVUE }
$$

CONTINUE
CONTINUE
$K=1 P / 2$
$K_{0}=2 \approx K /(I P-K)$
$\triangle A(I)=-K, I F, 2$
CONTINUE
$D 060 I=1, I F$
$J=J I P+1-I(A A I)$
$A(J)=R E A L(A I)$ PP(J) = AA(I)
60

70
CONTINUE
IF (IWR.NE.I) RETURN

* \quad (1 X, I I MAGINARY TERMS SHOULD EE ZEROI/
RETURN

SUBRDUTINE RECON(A,IP,RMS,IVF,IPP, N,S)
 RECONSTRUCTS SPEECH SAMPLES FROM LPC COEFF, ETC A VECTOR OF LPC COEFF
IP $=$ NUMBER OF COEFE ORDER OF FILTERI
RMS $=$ RMS VALE OF ERROR SIGNAL IVF $=0$ UNVDICED IPP $=$ PITCICED
NERIOD IN NUMQER OF SAMPIES
N $=$ SAMPLES PER FRAME
$S=$ SAMPLE VECTOR (DUTDUT)

10

CONTINUE
NIP $=N+1 P$
NS $=1+I ?$

$A O(I)=A(I)$
105 CONTINUE
IVFG $=$ IVF
IPPO $=$ IPD
C TEST IF VOICED
IF(IVFO.NE.O) GO TO 300
C RECCNSTRUCT UNVOICED SPEECH
200 E RMSO\#GGNOF (ISEED)
NSMI 210 I $=$
$E=E-A(I) \neq X(N S M I)$
210
CONTINUE
X(NS)
X(NS $)=E(N S . G E . N I P)$ GO TO 600
NS $\overline{\text { G }} \mathrm{NS}+\mathrm{F}$
200
C
c
C
3
START VOICED PULSE

C TEST FJP BEGINING OF PULSE PERIOD
400 IF (NP.GT.IPPD) GO TC 100
$E=(N P \cdot O Q \cdot 1) E=-E X$
C RECJNSTRUCT VOICED SPEECH
C
5
5
$\begin{array}{ll}510 & \text { EONTE-A(I)\#X(NSMI) } \\ & \text { NP }=N \text { NP } \\ & X(N S)=E \\ & \text { IF(NS.GE.NIP) GO TO } 600\end{array}$

SURROUTINE WINDW $(X, Y, N, I W I N)$
nonnonomana


```
DIMENSION X(1),Y(1)
AN =FLOAT(N)
```

 RECTANGULAR WINDOW CJPY VECTOR
 10

$$
\begin{aligned}
& \text { CO } 20 I=?, N \\
& Y(I)=X X I Y \\
& \text { CONTINUE } \\
& \text { RETUN }
\end{aligned}
$$

C
C
C HAMMING WINDCW

C BARTLETT WINDOW
$210 \quad N N=N / 2$

$$
\begin{aligned}
& A N N=N N+1 \\
& D J 220 I=1, N N \\
& A J=F L A T(I-1) \\
& Y(I)=X(I) \neq 2 * A J /(A N-1.0) \\
& \text { CJNTINUE }
\end{aligned}
$$

220

$$
00230 I=N N N, N
$$

230 CONTINUE

$$
\begin{aligned}
& A J=F L O A T(I-1) \\
& Y(I)=X(I) \neq 2.0 *(1.0-A J /(A N-1.0)) \\
& C D N T I N U E
\end{aligned}
$$

C BLACKMAN WINDOW
310

$$
\begin{aligned}
& C O 320 \text { I }=1, N \\
& A J=F L O A T(I-1) \\
& Y(I)=X(I)=10.42-0.5 * C O S(T W O P I * A J /(A)
\end{aligned}
$$

320 CONTINUE
C RETURN
C
C
410

$$
\begin{aligned}
& C D 420 I=1, N \\
& \text { AJ }=\mathrm{FLOA} T(I-i) \\
& Y(I)=X(I) * 0.5 *(1.0-\operatorname{Cos}(T W O P I * A J /(A N-1.0)))
\end{aligned}
$$

420
CONTINUE

$$
\begin{aligned}
& 999 \text { WRITE(S,998): } \\
& \begin{array}{l}
\text { FIRMAT } / 1 / 10 \mathrm{X}, 1 \neq \neq \text { ERRCR SUBR WINDOW ** } / 1 / 1 \\
\text { STOP } \\
\text { END }
\end{array}
\end{aligned}
$$

SUBRCUTINE VPLTIN (N)

APPENDIX A. 3 POWER SPECTRAL DENSITY ANALYSIS AND PLOTTING FROGRAM

DINEASIONX(256)
READ (5, $8, E N D=50)$ INUM, ISKIP, IWIN
FORMAT (3I5)
8

REAL(2,?
CONTINUE
READ ($2,25, E N D=90) X$
CALL PSDINT (X, M)
CALL SPL INT
READ $2,25, E N D=90) \quad x$
FBRAT
CALL PSD (X,M, IWIN
FORNATE(X), WRITESG
$K=K+1$
CALL SPL (X)
IF (K.GT.INUM) GO TO 90
GO TO 20
IP EN $=990$
SALL FLOT (AX, Y, IPEN)
STOP
STOP
END

SLBROUTINE SPLINT
nnomanonnonanon
SUBROUT INE PLOTS THE PCWER SPECTRAL DENSITY
(LOG OF MAGNITUDEI FOR I2 FREQUENCI ES WHICH
IS INPUT IN MAGNITUDE FORM IN VECTOR Y
VALUES IN Y SHOULD BE EETWEEN 0.01 AND 100.0
CALL SFLINT TO INITIALIZE PLOTTING
CALL SFL (Y) FOR EVERY SET DF 128 PSD VALUES
CALLING PROGRAM SHOULD ISSUE CALL PLOT $(X, Y, 9$ g $)$ WhEN FLOTTING IS COMPLETE

DIMENSION Y(1) $X(1281, Y Y(228)$
DIMENSION RORGX('́), RORGY(S),GX(19),GY(19), IGP(19)
C DATA FCR SIX PLOT ORIGINS

C DATA TC PLGT AXIS

$X(I)=F L O A T(I-1) * 0.05859-0.04$
CONTINUE CALL PLOTS (IA,IB,IC)
IFLAG=0

ENTRY SPL (Y)
ISCAN $=$ ISCAN +1
RETURN IMMEDIATELY IF FLOT FULL
IF (IFLAG.EQ.I) RETURN
CONVERT DATA TO LOG PLOT

SUBROUTINE PSCINT (X, M)
WITr APPLICATION TO SPECTRAL ESTIMATION,
IEEE TRANS AUDIO, ELECTREACDUSTICS, V AU-18, DEC70
$X=V E C T O R ~ O F$ INPUT SAMPLES
$M=$ POWER OF 2 FOR NUMBER OF SAMPLES
IWIV $=0$ NO INDOW
2 HAMNING (ALPHA 2 (2 (2.54)
2 BARTLETT
3 BLACKMAN
4 HANNING
FIRST CALL IS TO PSDINT AND THEN EACH SUEESSIVE TO START A FRESH STRING OF DATA CALL PSOINT AGAIN

```
```

CIMENSION X(256), IWK (19)

```
CIMENSION X(256), IWK (19)
COMPLEX XN(51 2 ), XNF (5I2), YV(512), AI (512)
COMPLEX XN(51 2 ), XNF (5I2), YV(512), AI (512)
DATA XN, XNP/IC24* (C.O, O.O1/
\(M M=M+1\)
\(\Lambda=2 \neq M\)
\(N N=2 * N\)
SPECIFY COEFFICIENTS NEEDED IN ADCITION
OF NEXT X
Ti NAKE V VECTOR TO CURRENT X
VE
```



```
\(A I(I)=(1,0,0.0)\)
AI \(\bar{I} I)^{+1}=\)
                                \((-1.0,0.0)\)
    CONTINUE
    \(A I M G=0 \cdot 0\)
\(D O I O 1=I-\bar{M} I, N\)
\(X N(I)=C M P L X(\)
    \(X N(I)=C M P L X(X(I), \triangle I M G)\)
    FFT OF CURREENT X(T) VECTOR, LAST HALF ZERO.
    CALL FFT2 (XN,MM, IWK)
    RE TLRN
    USE THIS ENTRY FOR EACH FRAME AFTER FIRST
    ENTRY PSO \(_{N M}=M, M\), IWIN)
    \(N M=\begin{gathered}M+1 \\ N\end{gathered}\)
    \(N N=2 \neq N\)
    \(\Delta N=F L C A T(N)\)
        ANN = FLOAT (NN)
        \(\triangle I M E=0.0\)
    XNP \(\frac{110}{10}=\mathrm{C} M \mathrm{I} \dot{\mathrm{C}} \mathrm{X}(X(I), A I M G)\)
    CONTINUE
    FFT OF NEXT X (T) VECTOR,LAST HALF ZERO.
CALL FFT2 (XNP,MM,IWK)
FORN Y\{F) VECTCR, CCEFF IN REV BINARY ORDER.
```



```
LO \(123 \mathrm{I}=1, \mathrm{MN}\)
```


APPENDIX B.I COMPUTER ANALYSIS AND MODIFICATION OF VOICED SPEECH

The 15 frame (334 msec.$)$ segment of speech analyzed in this appendix is the "long e" sound (as in need) and is spoken by a woman. The process illustrated shows both direct reconstruction and reconstruction with the pitch reduced by a factor of 0.58 and the formant frequencies reduced by a factor of 0.88 .

Figure B.I.I WAVEFORM OF INPUT SPEECH

figure b.1.2 logarithmic power spectral density of input speech

FRAME
RAME
8.64423655
1.69222332
5.10815721
$0-i n$
RMS VAIUE CF SANPLES =
no.J. T 2 -4000040
RNS VALUE IF EFROR =
RATIO SAMPLE RMJ TO ERROR RMS =
THIS FRANE IS VGICED
$171 \cdot 1$
$51 \cdot 3$
$421 \cdot 0$
$71 \cdot 2$
$179 \cdot 0$
$112 \cdot 2$
00

n

PITCH PERIOD AFTER MOLIFICATION 80

FRAME
RMS VALUE
5.0167320 RMS VALUE OF SAMPLES PREDICTOR COEFFICIENTS

$G I N=8.03218$
GIN
RATIO SANFLE FNS TO ERROR RMS =

THIS FRAME IS VOICEO

PITCH PERICD AFTER MODIFICATIGI 85

FRAME 5
RNS VALUE CF SAMPLES＝
OREDICTOR COEFFICIENTS
$08 \exists 2$
ய

 تur
 AYVM
700
 －Ouvinnmouninopar
\qquad N G CUT $=9.46694$
9.21590871

 minnncrominna ज゙mingunnvoño に＝00000000000 4.66012

12

$\rightarrow N \sin$

RMS VALLE OF ERRJR＝ 2.26235340
THIS FRAME IS VIICED

PITCH PERICD IS 49
FTRMANT POLES AT $Z=$
N＂ル＂゙＂

ペへいついにト
 PITCH PERICD IS
FSRMANT 1 DUE TO
FCRMANT 2 DUE TO
｜1 II H 11
かくロロロ ハルயルル！ a a cr．

将 $8+-J \div$
$7+-J=$
$4+-J *$
$6+-J=$
$2+-J=$
0.0
0.0 aryun

FORMANT FREOLENCY SCALE FACTDF $=0.8800$
REAL POL

PITCH PERIOC AFTER MODIFICATION 85

யேயயய

ートに上ト

$=0.000100$
3478.0 BANOWICTH＝
4483.9 BANDWIDTH＝
OR $=9.65 O C$ SAMPLE PERIOD

，
GANDWIDTH SCALE FA

－inman
Prandir
riranu
－OOOO

ルルールーロロー

FRAME
 6

$$
7.95 c+1109
$$

aj. -r, - wir:OO.Um
 tianinsinuntuoun
 vivin-2 omintunsom nci jo00000 io

PREDICTOR COEFFICIENTS

2.58917999

RATIO SAMFLE RMS TO ERRIR RMS =
THIS FRAME IS VOICED
10
11
12

\rightarrow -

KMS VALUE CF EFNOR =

 G CUT $=$ e.39599$$
\begin{aligned}
& \text { む } \\
& \text { m } \\
& \text { mil } \\
& \vdots \\
& 0
\end{aligned}
$$

[^0]PITCH PERIOR AFTER MOOIFICATION 85

$\xrightarrow{2}$

Traction Figure B.1.4 WAVEFORM OF ERROR SIGNAL

Figure B. 1.5 WAVEFORM OF FILTERED ERROR SIGNAL

VOCAL TRACT POLE LOCATIONS

+ After Modification

X - Before Modification

MOMOMOMMMMMMMMN YMODODODODODOMOMOOND MMMMMMODODODODODM MansumMMODODODOWMOA Figure B.I. 7 WAVEFORM OF UNMODIFIED OUTPUT SPEECH
 MMMWMWMWWMM WMMWMMNMWMMOM NMMMMWMWMM WMMMNMMOMOMOS Figure B.I. 8 WAVEFORM OF MODIFIED OUTPUT SPEECH

figure B.1.9 LOgARIthmic power spectral density of unmodified output speech

Figure B.1.10 Logarithmic power spectral density of modified output speech

APPENDIX B. 2 COMPUTER ANALYSIS AND MODIFICATION OF

The 15 frame (384 msec .) segment of speech analyzed in this appendix is the "sa" sound (begining of salt) and is spoken by a woman. The process illustrated shows both direct reconstruction and reconstruction with the pitch reduced by a factor of 0.58 and the formant frequencies reduced by a factor of 0.88 .

Figure B.2.1 WAVEFORM OF INPUT SPEECH

Figure b.2.2 Logarithmic power spectral density of input speech

＂゙＂ロ゙ロ

언뚜눈
σ
Processing Summary of Frame

Figure B．2．3（a）
frame
FRAME
1.17910290
$=$

SANPLES
CF
alue
PRECICTCR
G IN $=7.24431$
RNS VALUE CF ERROR＝
THIS FRAME IS UNVOICED

ットロトち
$170+0-10$
 NMMHTM

ヘルロロロロ
エリルルルル

$\sum_{a}^{\infty} \sum_{\alpha} \sum_{\alpha}^{\infty} \sum_{\alpha}^{\alpha} \underset{\alpha}{\alpha}$

レール4． 4
InINND O． OOtrity ofontun －00000

＂HUN゙HIH
がーになによ
nuñonnn

 ICN

岩
GORMAN i
REAL POL
$\triangle F I E$
FDRMANT
FRMANT

Summary of Frame 3

 $0.0 i n t m$ amtooor

$Z=$
NNANN
トートぐド

へいいいいットー

$$
\lll \lll
$$

जunvintre

concon
 FORIAANT 5 DLE TO REAL POLE NUHEER
REAL PCLE NUMEER

RMS VALUE OF ERROR

$G I N=5.64 C C 7$

FREDICTCR FREDICT

$$
\begin{array}{r}
9 \\
+ \\
\hline
\end{array}
$$

FREDICTCR
RMS VALUE
1.23555410
$=$
Summary of Frame

ェぃயぃぃ

$$
\begin{aligned}
& \text { "it "i "I } \\
& \text { NNNNN }
\end{aligned}
$$ NOI

NOI $\triangle 10$ AFTER MOCIFIC \triangle
FCRMANT

ば
います。 2^{2}

によゆによ

4

FRAME 5
RMS VALUE RMS VALUE CF SAMPLES＝

PREDICTOR COEFFICIENTS

$251 \cdot 1$
$134 \cdot 5$
$258 \cdot 4$
$105 \cdot 3$
$355 \cdot 1$ NoHNEM

G LUT $=5.62331$

FRAME
RNS VALUE OF SAMPLES =
PREDICTCR CCEFGICIENTS
1.67511628

[^1]

Figure B.2.4 WAVEFORM OF ERROR SIGNAL
\qquad

Figure B.2.5 WAVEFORM OF FILTERED ERROR SIGNAL

Figure B.2.7 WAVEFORM OF UNMODIFIED OUTPUT SPEECH

Figure B.2.8 WAVEFORM OF MODIFIED OUTPUT SPEECH

Figure B.2.9 LOGARITHMIC POWER SPECTRAL DENSITY OF UNMODIFIED OUTPUT SPEECH

APPENDIX C DESCRIPTION OF VOICE TAPE

The audio recording which is available from the author has four sections each of which contains three segments of speech. These three speech segments are of the following sounds:

Segment 1 - Five long vowels.
"a e i o u"
Segment 2 - Four words which are combinations of fricatives and voiced sounds.
"sat free hip done"
Segment 3 - A sentence with a varity of sounds.
"Every salt breeze comes from the sea."
Each of these segments is repeated in each segment of the tape. Each section of the tape shows the effects of a different step in the processing.

Section 1 - Unprocessed speech, the recording used for input to the processing system.

Section 2 - Speech which has been converted to digital form and then converted back to analog form.with no other processing.

Section 3 - Speech which has been encoded into a set of LPC parameters and then decoded using the same parameters (i.e. no modification).

Section 4 - Speech which has been encoded into a set of LPC parameters and those parameters altered to reduce the pitch frequency by a factor of 0.56 and to reduce the formant frequencies by a factor of 0.88 . The same LPC decoding process is then used to reconstruct the speech segment.

1. Atal, B.S. and Schroeder, M.R., "Adaptive Predictive Coding of Speech Signals," Bell System Technical Journal, p. 1973-1986, October 1970.
2. Atal, B.S. and Haunaur, S.L., "Speech Analysis and Synthesis by Linear Prediction of the Speech Wave," Journal of the Acoustical Society of America, v. 50, p. 637-655, 1971.
3. Blankenship, P.E., LDVT: High Performance Minicomputer for Real-Time speech Processing, paper presented at IEEE Electronics and Areospace Systems Convention, Washington, D. C., 29 September - 1 October 1975.
4. Makhoul, J., "Spectral Analysis of Speech by Linear Prediction," lEEE Transactions on Audio and Electroacoustics, v. AU-21, D. 140-148, June 1973.
5. Makhoul, J., "Linear Prediction: A Tutorial Review," Proceedings of the IEEE, v. 63, p. 56I-580, April 1975.
6. Markel, J.D. and Gray, A.H., "A Linear Prediction Vocoder simulation Based upon the Autocorrelation Method," IEEE Transactions on Acoustics, Speech and Signal Processing, v. ASSP-22, P. 124-134. April 1974.
7. Markel, J.D. and Gray, A.H., Linear Prediction of :Speech, Springer-Verlag, 1976 .
8. Massachusetts Institute of Technology Lincoln Laboratory Report 1976-37, Microprocessor Realization of a Linear Predictive Vocoder, by E. M. Hofstetter and others, 30 September 1976.
9. Rabiner, L.R. and Schafer, R.W., Digital Processing of Speech Signals, Prentice-Hall, 1978.
10. Rader, C.M., "An Improved Algorithm for High Speed Autocorrelation With Application to Spectral Estimation," LEEE Transactions on Audio and Electroacoustics, V. AU-18, D. 439-441, December 1970.
11. Schafer, R.W. and Rabiner, L.R., "Digital Representation of Speech Signals," Proceedings of the 1EEE, April 1975.
12. Defense Documentation Center
Camercn Station
Alexandria, Virginia 22314
13. Library, Code 0142

Naval Postgraduate Schcol
Mcnterey, California 93940
3. Department Chairtan, Code 52

2
Cepartment of Electrical Enginefring Naval Postoreduate School
Moriterey, Califorrie 93940
4. Professor Sidney R. Parker, Code 52 Px 5
Department of Electrical Enginfering Naval Postgraduate School
Monterey, California 93940
5. Capt. Geoffrey T. Hall, IISMiC 2 816 McPryde Trive
Rlacksburg, Virginia 24080

[^0]:

[^1]:

 ## -nNom

 \rightarrow NMmbet

 -rnmm
 6

 Processing Summary of Frame

 Figure B.2.3(e)

